A Type Theory for Comprehension Categories

Niyousha Najmaei, Niels van der Weide, Benedikt Ahrens,
Paige Randall North

HoTTEST, February 2026

Slides slightly adapted from Niyousha's — thanks a lot!

Setting

» Martin-Lof type theory (MLTT) serves as a foundation for
proof assistants and programming languages
» Several well-established categorical semantics: contextual
categories, categories with families, display map categories,
natural models, ...
» Comprehension categories as a general framework to organize
these notions [ALN24]:
"We take comprehension categories as a unifying language
and show how almost all established notions of model em-
bed as sub-2-categories (usually full) of the 2-category of
comprehension categories.”

1/25

Motivation

Interpretation of MLTT in comprehension categories:

T —X—¢C”

MLTT semantics \ /

T —X* ¢~

Semantics does not use all the features of \ /
P
C

2/25

Motivation

Interpretation of MLTT in comprehension categories:

T —X—¢C”

MLTT semantics \ /

T —X* ¢~

Semantics does not use all the features of \ /
P

C
Two options:

1. Restrict the comprehension categories to ‘simple’ ones (fully
faithful or discrete)

2/25

Motivation

Interpretation of MLTT in comprehension categories:

T —X—¢C”

MLTT semantics \ / language CCTT
X

T —=—> C~
Semantics does not use all the features of \ /
P

C
Two options:

1. Restrict the comprehension categories to ‘simple’ ones (fully
faithful or discrete)

2. Make the type theory more expressive: CCTT

2/25

Why not Restrict the Models

» Are there interesting examples we would miss?

P Are there interesting features that we would lose?

More on this after some preliminaries

3/25

Outline

Review: Comprehension Categories
Back to Our Motivation

Our Work: Core Syntax CCTT
CCTT Captures Subtyping
Extending CCTT with Type Formers

Related Work

Outline

Review: Comprehension Categories

Comprehension Categories

Comprehension Category [Jac93, Definition 4.1]

1. a category C,
2. a (cloven) fibration p: 7 — C,

3. a functor x : T — C™ preserving cartesian arrows,

such that the following diagram commutes.

T ———cC

NS

4/25

Comprehension Categories

Comprehension Category [Jac93, Definition 4.1]

1. a category C,
2. a (cloven) fibration p: 7 — C,

3. afunctor x : T — C™ preserving cartesian arrows,

such that the following diagram commutes.

T ———cC

NS

A comprehension category is
full if x is full and faithful;
split if p is a split fibration.

4/25

Interpreting MLTT in a Comprehension Category

T —>X 5 c

NS

Category C models contexts
Fibre 7r models types in context

Reindexing models substitution

x(A)

Comprehension y models context extension (I, A) — (LA —=
Sections of y(A) model terms [¢ : A

r

5/25

Vertical Morphisms

What about morphisms in a fibre 77

6/25

Outline

Back to Our Motivation

Back to Our Motivation

T —X——¢C

N

> A comprehension category can express both
1. morphisms between contexts and
2. morphisms between types.

» Interpreting MLTT does not make use of morphisms of types,
hence these are often taken to be trivial (7 discrete) or
coming from C (x fully faithful)

» Restriction ‘kills off’ this ‘extra dimension’ of morphisms.

Later we will see that this extra dimension captures coercive sub-
typing.

7/25

Examples of Non-Full Comprehension Categories |

P Intensional type theories are often given semantics in an
algebraic weak factorisation system (AWFS) [GL23]

> AWEFSs give rise to non-full comprehension categories
EM(R) - v e

SN S

We capture this extra semantic structure in CCTT.

8/25

Examples of Non-Full Comprehension Categories |l

Groupoids
SplitFib v Grp™~
cod cod
Grp
Categories
SplitFib v Cat™
cod cod

Cat

9/25

Examples of Non-Full Comprehension Categories Il

Topos £
£/ subobject o
N
&
Heyting algebra H
Set/H subobject Set™

\ cod

Set

10/25

In This Work...

1. We design rules of a type theory that reflect the structure of
comprehension categories: CCTT

2. We show how some rules of CCTT can be seen as rules for co-

ercive subtyping, extending work by Coraglia and Emmenegger
[CE24]

3. Extend CCTT with -, - and Id-types and their compatibility
with subtyping

Based on From Semantics to Syntax: A Type Theory for Compre-
hension Categories

11/25

https://dl.acm.org/doi/abs/10.1145/3776725
https://dl.acm.org/doi/abs/10.1145/3776725

Outline

Our Work: Core Syntax CCTT

CCTT: Judgements

[ctx
Ns: A
lNs=s:A
I A type
MAF¢:B
MAFt=t:B

ok wh =

12/25

CCTT: Judgements

[N ctx
Ns: A
lNs=s:A
I A type
NAkFt:B
MNAFt=t:B

ok wh =

} TEt:A&THt=t:Ain MLTT

12/25

CCTT: Judgements

. [octx
N-=s: A
lFs=s:A
I A type
NAFt: B
NMAFt=t:B

o AW e

> Judgement 5: a morphism [t] : [A] — [B] in the fibre Tjr

12/25

CCTT: Judgements

. [octx
N-=s: A
lFs=s:A
I A type
MAFt:B
NMAFt=t:B

o AW e

> Judgement 5: a morphism [t] : [A] — [B] in the fibre Tjr

» Term judgement '+ a: A as a macrofor'-a:T.A and
Frm,0a=1

12/25

CCTT: Structural Rules

Structural rules regarding the category of contexts:
_Petx ctx-mor-id
FTELr:l

NlMN-s:A AFs:0
l-s"os:0

ctx-mor-comp

rks:4A ctx-id-unit
[Fsolr=s: A
[Flpos=s: A

Es:A AFs:© 0Fs":® .\ ompassoc
lEs"o(s"os)=(s"o0s)os: &

We have similar rules for the category of types.

13/25

CCTT: Structural Rules

See the paper for the rest of the structural rules: substitution, con-
text extension, etc

Theorem (Soundness)

Every comprehension category models the rules of CCTT.

Next, we discuss some of the rules through the lens of subtyping.

14/25

Outline

CCTT Captures Subtyping

Subtyping in CCTT

Coraglia and Emmenegger [CE24] observe that the vertical mor-
phisms can be thought of as witnesses for coercive subtyping.

MNAFt:B ~ THAZ.B

15/25

Subtyping: Subsumption

Theorem (Subsumption)
From the rules of CCTT, we can derive the following rule.

lrN-ABtype THFA<;B TFa:A
T.toa: B

ra—7=" .rB

RN

.t is like a coercion function for A <; B.

16 /25

Subtyping: Weakening and Substitution

We postulate substitution for subtyping:

AFABtype AFA<,B Tks:A

Theorem (Weakening for Subtyping)

From the rules of CCTT, we can derive the following rule.

[-AA Btype THA< A
[.BF Alrg] <irg Alre]

17/25

Outline

Extending CCTT with Type Formers

Subtyping for Type Formers

Type Formers Are Functors

» Type formers make new types from old
» Also have term formers; here: context morphism formers

~ Type formers should also act on morphisms of types

To Do

1. Extend CCTT with a type former (e.g. X-types) and show
soundness.

2. Extend CCTT with subtyping for the type former and show
soundness

We look at X-types to keep things simple.

18/25

Rules for 2-types

Extend CCTT with X-types, e.g.:

F'-Atype T.AF Btype

i -f
FF 348 type sigma-form

F'-Atype T.AF Btype

- sigma-intro
MA.Bt pairg,g: [.XaB

N-Atype T.AF Btype

i
[XaBF projg,g:[AB oo

N-Atype T.Al B type
ABF projs g © pairy g = 1r a5 : AB
F.ZAB = pairzAB o pl’szAB = erzAB : I'.ZAB

sigma-beta-eta

A Atype AAFBtype Iks:A

— subst-sigma
r | ZA[S]B[S.A] = iZAB,s . (ZAB)[S]

19/25

Rules for Subtyping for >-types

1. We want to have the following rule:

F-AA type T.AFBtype T[.A B type
FEA</ A T.AFB<, B[.f]

[+ S4B <s(r.g) Za B’

> acts covariantly on both arguments.

20/25

Rules for Subtyping for >-types

1. We want to have the following rule:
F-AA type T.AFBtype T[.A B type
FrFA<,A T.AFB<, B[l.f]
MFSAB <s(rg) Za B

> acts covariantly on both arguments.
2. The coercion function for 4B <s(f o) Tar B’ should act as
follows:

proix , 5

’ pair. , B/
- FAB 2%, [AByvof] 25 raB 25 rs,B

20/25

Rules for Subtyping for >-types

1. We want to have the following rule:
F-AA type T.AFBtype T[.A B type
FrFA<,A T.AFB<, B[l.f]
MFSAB <s(rg) Za B

> acts covariantly on both arguments.
2. The coercion function for 4B <s(f o) Tar B’ should act as
follows:

proix , 5

’ pair. , B/
- FAB 2%, [AByvof] 25 raB 25 rs,B

3. Rules for functoriality for ¥(—, —)

20/25

Semantic Structure for Subtyping for 2—Types

Definition
(C,T,p,x) has subtyping for X-types if it has
1. dependent sums and

2. foreach f: A— A" in Tr and g : B — B/[xof] in Tr.a, a
morphism in 7t
ng . ZAB — ZA/B,

3. xo0(Xrg) is the following composite

PVOJZAB xof.B’

pair. -4
S4B FAB X%, [A B xf] X5 ra.B 25 rsysB

4. X (_y(—) preserves identities and composition

21/25

Interpretation and Sanity Check

Theorem
Any comprehension category with subtyping for > -types models
CCTT extended with subtyping for ¥ -types.

Sanity Check
When ¥ is fully faithful,

» our X-structures are equivalent to Lumsdaine and Warren's
[LW15]

» Jacobs' structure for —-types [Jac93] gives rise to ours

22/25

Outline

Related Work

Some Related Work

» Mellies and Zeilberger [MZ15] give a fibrational view of
subsumptive subtyping
» Coraglia and Emmenegger [CE24]

>

>
>

study “generalized categories with families”, equivalent to
non-full comprehension categories

study type morphisms as witnesses for coercive subtyping
specify some of the rules for ¥ and I1

23/25

Some More Related Work

» Laurent, Lennon—Bertrand and Maillard [LLM24]

» extend MLTT to a type theory with definitionally functorial
type formers

> extend MLTT to two type theories with coercive (MLT Tcoe)
and subsumptive subtyping

» MLTTcoe has at most one coercion between any two types,
subsitution is strictly functorial (see our CCT Tsplit)

» Adjedj, Lennon—Bertrand, Benjamin, and Maillard [Ad]j+26]

» develop a type theory AdapTT modelled by split generalized

categories with families and

» provide a general framework AdapTT2 for defining type
formers that are automatically functorial

24 /25

Conclusion

Summary

> CCTT reflects the structure of a comprehension category.

» Gain back the ‘extra dimension’ of type morphisms which cap-
tures coercive subtyping.

Future: Type Morphisms ~~ Definitional Equalities

» In models of MLTT from AWFSs: type morphisms are
morphisms preserving transport of structure along an identity
strictly, up to definitional equality.

~ Could add rules to CCTT that express this strict preservation

» Example of a commonly used function in MLTT that is a type
morphisms in these models: the first projection of a X-type.

Thank you for your attention!

25/25

References |

[Adj+26]

[ALN24]

[CE24]

[GL23]

[Jac93]

[LLM24]

[Lw15]

Arthur Adjedj et al. “AdapTT: Functoriality for Dependent Type Casts”. In: Proc. ACM Program. Lang.
10.POPL (2026), pp. 628-658. DOI: 10.1145/3776664. URL: https://doi.org/10.1145/3776664.

Benedikt Ahrens, Peter LeFanu Lumsdaine, and Paige Randall North. “Comparing Semantic Frameworks
for Dependently-Sorted Algebraic Theories”. In: Programming Languages and Systems: 22nd Asian
Symposium, APLAS 2024, Kyoto, Japan, October 22-24, 2024, Proceedings. Kyoto, Japan: Springer-
Verlag, 2024, pp. 3-22. 1SBN: 978-981-97-8942-9. pDOI: 10 . 1007 /978 -981-97-8943-6 _1. URL:
https://doi.org/10.1007/978-981-97-8943-6_1.

Greta Coraglia and Jacopo Emmenegger. “Categorical Models of Subtyping”. In: 29th International
Conference on Types for Proofs and Programs (TYPES 2023). Ed. by Delia Kesner, Eduardo Hermo
Reyes, and Benno van den Berg. Vol. 303. Leibniz International Proceedings in Informatics (LIPlcs).
Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024, 3:1-3:19. 1SBN: 978-3-
95977-332-4. DOIL: 10.4230/LIPIcs.TYPES.2023.3. URL: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.TYPES.2023.3.

Nicola Gambino and Marco Federico Larrea. “Models of Martin-L&f Type Theory from Algebraic Weak
Factorisation Systems”. In: The Journal of Symbolic Logic 88.1 (2023), pp. 242-289. 1ssn: 0022-
4812,1943-5886. DOI: 10.1017/js1.2021.39.

Bart Jacobs. “Comprehension Categories and the Semantics of Type Dependency”. In: Theor. Comput.
Sci. 107.2 (1993), pp. 169-207. DOI: 10.1016/0304-3975(93)90169-T. URL: https://doi.org/10.
1016/0304-3975(93)90169-T.

Théo Laurent, Meven Lennon-Bertrand, and Kenji Maillard. “Definitional Functoriality for Dependent
(Sub)Types”. In: ed. by Stephanie Weirich. Vol. 14576. Lecture Notes in Computer Science. Springer,
2024, pp. 302-331. DOL: 10.1007/978-3-031-57262-3_13. URL: https://doi.org/10.1007/978-
3-031-57262-3},5C_13.

Peter Lefanu Lumsdaine and Michael A. Warren. “The Local Universes Model: An Overlooked Coherence
Construction for Dependent Type Theories”. In: ACM Transactions on Computational Logic 16.3 (July
2015), pp. 1-31. 1SsN: 1557-945X. DOI: 10.1145/2754931. URL: http://dx.doi.org/10.1145/
2754931.

[} = =

https://doi.org/10.1145/3776664
https://doi.org/10.1145/3776664
https://doi.org/10.1007/978-981-97-8943-6_1
https://doi.org/10.1007/978-981-97-8943-6_1
https://doi.org/10.4230/LIPIcs.TYPES.2023.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.3
https://doi.org/10.1017/jsl.2021.39
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1007/978-3-031-57262-3_13
https://doi.org/10.1007/978-3-031-57262-3%5C_13
https://doi.org/10.1007/978-3-031-57262-3%5C_13
https://doi.org/10.1145/2754931
http://dx.doi.org/10.1145/2754931
http://dx.doi.org/10.1145/2754931

References |l

[MZ15] Paul-André Melligs and Noam Zeilberger. “Functors are Type Refinement Systems”. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015. Ed. by Sriram K. Rajamani and David Walker. ACM, 2015,
pp. 3-16. DOI: 10.1145/2676726.2676970. URL: https://doi.org/10.1145/2676726.2676970.

it
)
»
?)

https://doi.org/10.1145/2676726.2676970
https://doi.org/10.1145/2676726.2676970

	Review: Comprehension Categories
	Back to Our Motivation
	Our Work: Core Syntax CCTT
	CCTT Captures Subtyping
	Extending CCTT with Type Formers
	Related Work
	References

