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Setting

» Martin-Lof type theory (MLTT) serves as a foundation for
proof assistants and programming languages
» Several well-established categorical semantics: contextual
categories, categories with families, display map categories,
natural models, ...
» Comprehension categories as a general framework to organize
these notions [ALN24]:
"We take comprehension categories as a unifying language
and show how almost all established notions of model em-
bed as sub-2-categories (usually full) of the 2-category of
comprehension categories.”

1/25



Motivation

Interpretation of MLTT in comprehension categories:

T —X—¢C”

MLTT semantics \ /

T —X* ¢~

Semantics does not use all the features of \ /
P
C
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Motivation

Interpretation of MLTT in comprehension categories:

T —X—¢C”

MLTT semantics \ / language CCTT
X

T —=—> C~
Semantics does not use all the features of \ /
P

C
Two options:

1. Restrict the comprehension categories to ‘simple’ ones (fully
faithful or discrete)

2. Make the type theory more expressive: CCTT
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Why not Restrict the Models

» Are there interesting examples we would miss?

P Are there interesting features that we would lose?

More on this after some preliminaries
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Comprehension Categories

Comprehension Category [Jac93, Definition 4.1]

1. a category C,
2. a (cloven) fibration p: 7 — C,

3. a functor x : T — C™ preserving cartesian arrows,

such that the following diagram commutes.

T ———cC

NS
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Comprehension Categories

Comprehension Category [Jac93, Definition 4.1]

1. a category C,
2. a (cloven) fibration p: 7 — C,

3. afunctor x : T — C™ preserving cartesian arrows,

such that the following diagram commutes.

T ———cC

NS

A comprehension category is
full if x is full and faithful;
split if p is a split fibration.
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Interpreting MLTT in a Comprehension Category

T —>X 5 c

NS

Category C models contexts
Fibre 7r models types in context

Reindexing models substitution

x(A)

Comprehension y models context extension (I, A) — (LA —=
Sections of y(A) model terms [ ¢ : A

r
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Vertical Morphisms

What about morphisms in a fibre 77
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Back to Our Motivation

T —X——¢C

N

> A comprehension category can express both
1. morphisms between contexts and
2. morphisms between types.

» Interpreting MLTT does not make use of morphisms of types,
hence these are often taken to be trivial (7 discrete) or
coming from C (x fully faithful)

» Restriction ‘kills off’ this ‘extra dimension’ of morphisms.

Later we will see that this extra dimension captures coercive sub-
typing.
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Examples of Non-Full Comprehension Categories |

P Intensional type theories are often given semantics in an
algebraic weak factorisation system (AWFS) [GL23]

> AWEFSs give rise to non-full comprehension categories
EM(R) - v e

SN S

We capture this extra semantic structure in CCTT.
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Examples of Non-Full Comprehension Categories |l

Groupoids
SplitFib v Grp™~
cod cod
Grp
Categories
SplitFib v Cat™
cod cod

Cat
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Examples of Non-Full Comprehension Categories Il

Topos £
£/ subobject o
N
&
Heyting algebra H
Set/H subobject Set™

\ cod

Set
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In This Work...

1. We design rules of a type theory that reflect the structure of
comprehension categories: CCTT

2. We show how some rules of CCTT can be seen as rules for co-

ercive subtyping, extending work by Coraglia and Emmenegger
[CE24]

3. Extend CCTT with -, - and Id-types and their compatibility
with subtyping

Based on From Semantics to Syntax: A Type Theory for Compre-
hension Categories
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https://dl.acm.org/doi/abs/10.1145/3776725
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CCTT: Judgements

[ ctx
Ns: A
lNs=s:A
I A type
MAF¢:B
MAFt=t:B

ok wh =
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CCTT: Judgements

[N ctx
Ns: A
lNs=s:A
I A type
NAkFt:B
MNAFt=t:B

ok wh =

} TEt:A&THt=t:Ain MLTT
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CCTT: Judgements

. [ octx
N-=s: A
lFs=s:A
I A type
NAFt: B
NMAFt=t:B

o AW e

> Judgement 5: a morphism [t] : [A] — [B] in the fibre Tjr

12/25



CCTT: Judgements

. [ octx
N-=s: A
lFs=s:A
I A type
MAFt:B
NMAFt=t:B

o AW e

> Judgement 5: a morphism [t] : [A] — [B] in the fibre Tjr

» Term judgement '+ a: A as a macrofor'-a:T.A and
Frm,0a=1
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CCTT: Structural Rules

Structural rules regarding the category of contexts:
_Petx ctx-mor-id
FTELr:l

NlMN-s:A AFs:0
l-s"os:0

ctx-mor-comp

rks:4A ctx-id-unit
[Fsolr=s: A
[Flpos=s: A

Es:A AFs:© 0Fs":® .\ ompassoc
lEs"o(s"os)=(s"o0s)os: &

We have similar rules for the category of types.
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CCTT: Structural Rules

See the paper for the rest of the structural rules: substitution, con-
text extension, etc

Theorem (Soundness)

Every comprehension category models the rules of CCTT.

Next, we discuss some of the rules through the lens of subtyping.
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Subtyping in CCTT

Coraglia and Emmenegger [CE24] observe that the vertical mor-
phisms can be thought of as witnesses for coercive subtyping.

MNAFt:B ~ THAZ.B
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Subtyping: Subsumption

Theorem (Subsumption)
From the rules of CCTT, we can derive the following rule.

lrN-ABtype THFA<;B TFa:A
T.toa: B

ra—7=" .rB

RN

.t is like a coercion function for A <; B.
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Subtyping: Weakening and Substitution

We postulate substitution for subtyping:

AFABtype AFA<,B Tks:A

Theorem (Weakening for Subtyping)

From the rules of CCTT, we can derive the following rule.

[-AA Btype THA< A
[.BF Alrg] <irg Alre]
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Subtyping for Type Formers

Type Formers Are Functors

» Type formers make new types from old
» Also have term formers; here: context morphism formers

~ Type formers should also act on morphisms of types

To Do

1. Extend CCTT with a type former (e.g. X-types) and show
soundness.

2. Extend CCTT with subtyping for the type former and show
soundness

We look at X-types to keep things simple.
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Rules for 2-types

Extend CCTT with X-types, e.g.:

F'-Atype T.AF Btype

i -f
FF 348 type sigma-form

F'-Atype T.AF Btype

- sigma-intro
MA.Bt pairg,g: [.XaB

N-Atype T.AF Btype

i
[XaBF projg,g:[AB oo

N-Atype T.Al B type
ABF projs g © pairy g = 1r a5 : AB
F.ZAB = pairzAB o pl’szAB = erzAB : I'.ZAB

sigma-beta-eta

A Atype AAFBtype Iks:A

— subst-sigma
r | ZA[S]B[S.A] = iZAB,s . (ZAB)[S]
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Rules for Subtyping for >-types

1. We want to have the following rule:

F-AA type T.AFBtype T[.A B type
FEA</ A T.AFB<, B[.f]

[+ S4B <s(r.g) Za B’

> acts covariantly on both arguments.
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F-AA type T.AFBtype T[.A B type
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MFSAB <s(rg) Za B
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2. The coercion function for 4B <s(f o) Tar B’ should act as
follows:

proix , 5

’ pair. , B/
- FAB 2%, [ AByvof] 25 raB 25 rs,B

20/25



Rules for Subtyping for >-types

1. We want to have the following rule:
F-AA type T.AFBtype T[.A B type
FrFA<,A T.AFB<, B[l.f]
MFSAB <s(rg) Za B

> acts covariantly on both arguments.
2. The coercion function for 4B <s(f o) Tar B’ should act as
follows:

proix , 5

’ pair. , B/
- FAB 2%, [ AByvof] 25 raB 25 rs,B

3. Rules for functoriality for ¥(—, —)
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Semantic Structure for Subtyping for 2—Types

Definition
(C,T,p,x) has subtyping for X-types if it has
1. dependent sums and

2. foreach f: A— A" in Tr and g : B — B/[xof] in Tr.a, a
morphism in 7t
ng . ZAB — ZA/B,

3. xo0(Xrg) is the following composite

PVOJZAB xof.B’

pair. -4
S4B FAB X%, [ A B xf] X5 ra.B 25 rsysB

4. X (_y(—) preserves identities and composition
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Interpretation and Sanity Check

Theorem
Any comprehension category with subtyping for > -types models
CCTT extended with subtyping for ¥ -types.

Sanity Check
When ¥ is fully faithful,

» our X-structures are equivalent to Lumsdaine and Warren's
[LW15]

» Jacobs' structure for —-types [Jac93] gives rise to ours
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Some Related Work

» Mellies and Zeilberger [MZ15] give a fibrational view of
subsumptive subtyping
» Coraglia and Emmenegger [CE24]

>

>
>

study “generalized categories with families”, equivalent to
non-full comprehension categories

study type morphisms as witnesses for coercive subtyping
specify some of the rules for ¥ and I1
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Some More Related Work

» Laurent, Lennon—Bertrand and Maillard [LLM24]

» extend MLTT to a type theory with definitionally functorial
type formers

> extend MLTT to two type theories with coercive (MLT Tcoe)
and subsumptive subtyping

» MLTTcoe has at most one coercion between any two types,
subsitution is strictly functorial (see our CCT Tsplit)

» Adjedj, Lennon—Bertrand, Benjamin, and Maillard [Ad]j+26]

» develop a type theory AdapTT modelled by split generalized

categories with families and

» provide a general framework AdapTT2 for defining type
formers that are automatically functorial
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Conclusion

Summary

> CCTT reflects the structure of a comprehension category.

» Gain back the ‘extra dimension’ of type morphisms which cap-
tures coercive subtyping.

Future: Type Morphisms ~~ Definitional Equalities

» In models of MLTT from AWFSs: type morphisms are
morphisms preserving transport of structure along an identity
strictly, up to definitional equality.

~ Could add rules to CCTT that express this strict preservation

» Example of a commonly used function in MLTT that is a type
morphisms in these models: the first projection of a X-type.

Thank you for your attention!
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