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Lean

▶ An open source interactive theorem prover developed primarily by Leonardo
de Moura (Microsoft Research)

▶ Focus on software verification and formalized mathematics
▶ Based on Dependent Type Theory
▶ Classical, non-HoTT
▶ Similar to CIC, the axiom system used by Coq

▶ Lean 3 includes a powerful metaprogramming infrastructure for Lean in Lean
▶ The mathlib library for Lean 3 provides a broad range of pure mathematics

and tools for (meta)programming
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Axioms of Lean
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Untyped Lambda Calculus

e ::= x | e e | λx. e

e1⇝ e′1
e1 e2⇝ e′1 e2

e2⇝ e′2
e1 e2⇝ e1 e′2 (λx. e′) e⇝ e′[e/x]

▶ Originally developed by Alonzo Church as a simple model of computation
(equivalent to Turing Machines)

▶ Primitive notion of bound variables and substitution
▶ Nondeterministic “reduction” operation on terms simulates execution
▶ Reduction is confluent (Church-Rosser theorem): If e⇝∗ e1 and e⇝∗ e2, then

there exists e′ such that e1, e2⇝∗ e′
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Simple Type Theory

τ ::= ι | τ→ τ

e ::= x | e e | λx: τ. e

(x : τ) ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : α→ β Γ ⊢ e2 : α
Γ ⊢ e1 e2 : β

Γ, x : α ⊢ e : β
Γ ⊢ (λx : α. e) : α→ β

▶ Also developed by Alonzo Church as a type system over the untyped lambda
calculus

▶ All terms normalize in this calculus (strong normalization)
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Dependent Type Theory

τ ::= ι | τ→ τ

e ::= x | e e | λx : τ. e

(x : τ) ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : α→ β Γ ⊢ e2 : α
Γ ⊢ e1 e2 : β

Γ, x : α ⊢ e : β
Γ ⊢ (λx : α. e) : α→ β
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Dependent Type Theory

τ ::= ι | ∀x : τ. τ

e ::= x | e e | λx : τ. e

(x : τ) ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : ∀x : α. β Γ ⊢ e2 : α
Γ ⊢ e1 e2 : β[e2/x]

Γ, x : α ⊢ e : β
Γ ⊢ (λx : α. e) : ∀x : α. β
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Dependent Type Theory

τ ::= ι | ∀x : τ. τ | U

e ::= x | e e | λx : τ. e

(x : τ) ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : ∀x : α. β Γ ⊢ e2 : α
Γ ⊢ e1 e2 : β[e2/x]

Γ, x : α ⊢ e : β
Γ ⊢ (λx : α. e) : ∀x : α. β

Γ ⊢ ι : U
Γ ⊢ α : U Γ, x : α ⊢ β : U

Γ ⊢ ∀x : α. β : U Γ ⊢ U : U
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Dependent Type Theory
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Two Problems

Γ ⊢ U : U

▶ Girard’s paradox: This rule causes an inconsistency (all types become
nonempty, i.e. all propositions are provable)

▶ Solution: hierarchies of universes

Γ ⊢ Un : Un+1

Γ ⊢ α : Um Γ, x : α ⊢ β : Un

Γ ⊢ ∀x : α. β : Umax(m,n)
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Impredicativity

▶ Curry-Howard correspondence: Propositions act like types, whose terms are
the proofs (→ and ∀ act like the logical operators→ and ∀)

▶ We identify the lowest universe P := U0 as the universe of propositions
▶ We want things like “all natural numbers are even or odd” to be propositions,

but the ∀ rule doesn’t give us this

Γ ⊢N : U1 Γ,n :N ⊢ even n ∨ odd n : U0

Γ ⊢ ∀n :N. even n ∨ odd n : U1

▶ Solution: fix the rule so that if the second argument is in U0 then so is the forall

Γ ⊢ α : Um Γ, x : α ⊢ β : Un

Γ ⊢ ∀x : α. β : Uimax(m,n)
imax(m,n) =

0 n = 0
max(m,n) otherwise
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Dependent Type Theory

e ::= x | e e | λx : e. e | ∀x : e. e | Un

(x : τ) ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : ∀x : α. β Γ ⊢ e2 : α
Γ ⊢ e1 e2 : β[e2/x]

Γ, x : α ⊢ e : β
Γ ⊢ (λx : α. e) : ∀x : α. β

Γ ⊢ Un : Un+1

Γ ⊢ α : Um Γ, x : α ⊢ β : Un

Γ ⊢ ∀x : α. β : Uimax(m,n)
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Two Problems
▶ The types (λα : U1. α) τ and τ are not the same, even though

(λα : U1. α) τ⇝ τ

▶ Solution: Convertibility (a.k.a. definitional equality)
Γ ⊢ e : α Γ ⊢ α ≡ β

Γ ⊢ e : β

Γ ⊢ e : α
Γ ⊢ e ≡ e

Γ ⊢ e ≡ e′

Γ ⊢ e′ ≡ e
Γ ⊢ e1 ≡ e2 Γ ⊢ e2 ≡ e3

Γ ⊢ e1 ≡ e3

Γ ⊢ e1 ≡ e′1 Γ ⊢ e2 ≡ e′2
Γ ⊢ e1 e2 ≡ e′1 e′2

Γ ⊢ α ≡ α′ Γ, x : α ⊢ β ≡ β′

Γ ⊢ λx : α. β ≡ λx : α′. β′

Γ ⊢ ∀x : α. β ≡ ∀x : α′. β′

Γ ⊢ (λx : α. e′) e ≡ e′[e/x]
Γ ⊢ e : β

Γ ⊢ λx : α, e x ≡ e
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Inductive Types
▶ We want a general framework for defining new inductive types likeN

K ::= 0 | (c : e) + K

e ::= · · · | µx : e. K | cµx:e.K | recµx:e.K

N := µT : U1. (zero : T) + (succ : T→ T)
∃x : α. p x := µT : P. (intro : ∀x : α. p x→ T)

p ∧ q := µT : P. (intro : p→ q→ T)
p ∨ q := µT : P. (inl : p→ T) + (inr : q→ T)
⊥ := µT : P. 0
⊤ := µT : P. (trivial : T)
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Inductive Types

▶ Each inductive type comes with a constructor for each case, and a recursor
that allows us to prove theorems by induction and construct functions by
recursion

N := µT : U1. (zero : T) + (succ : T→ T)
zero :N
succ :N→N
recN : ∀(C :N→ Ui). C zero→

(∀n :N. C n→ C (succ n))→ ∀n :N. C n

recN C z s zero ≡ z
recN C z s (succ n) ≡ s n (recN C z s n)
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Inductive Types

▶ For an inductive declaration to be admissible, it must be strictly positive (no T
appears left of left of an arrow)
▶ Ex: this type violates Cantor’s theorem

bad := µT : U1. (intro : (T→ 2)→ T)

▶ Inductive families are also allowed:

eqα := λx : α. µT : α→ P. (refl : T x)
reflx : eqα x x

receq x : ∀(C : α→ Ui). C x→ ∀y : α. eqα x y→ C y
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Proof Irrelevance and its consequences

▶ We want to treat all proofs of a proposition as “the same”

Γ ⊢ p : P Γ ⊢ h : p Γ ⊢ h′ : p
Γ ⊢ h ≡ h′

▶ This means that an equality has at most one proof (anti-HoTT)
▶ To prevent inconsistency, some inductive types cannot eliminate to a large

universe

∃x : α. p x := µT : P. (intro : ∀x : α. p x→ T)
intro : ∀x : α. (p x→ ∃y : α. p y)
rec∃ : ∀C : U0.(∀x : α. p x→ C)→ (∃x : α. p x)→ C

▶ Some inductive types in P eliminate to other universes, if they have “at most
one inhabitant by definition”, this is called subsingleton elimination
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Actual axioms
▶ Propositional extensionality

propext : ∀p, q : P. (p↔ q)→ p = q

▶ Quotient types

quot : ∀α : Un. (α→ α→ P)→ Un

mkα,r : α→ α/r
liftα,r : ∀β. ∀f : α→ β. (∀x y. r x y→ f x = f y)→ α/r→ β

soundα,r : ∀x y. r x y→ mk x = mk y

lift β f H (mk x) ≡ f x

▶ The axiom of choice

nonempty α := µT : U0. (intro : α)
choice : ∀α : Un. nonempty α→ α
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Properties of the type system
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Undecidability

▶ The type judgment is “almost” decidable, but not quite
▶ The problem is an interaction of subsingleton elimination and proof

irrelevance

acc< := µT : α→ P. (intro : ∀x. (∀y. y < x→ T y)→ T x)

▶ acc x expresses that x is “accessible” via the < relation
▶ If everything <-less than x is accessible, then x is accessible
▶ If everything is <-accessible then < is a well founded relation
▶ acc is a subsingleton eliminator that lives in P!

▶ We can define an inverse to intro, such that intro x (invx a) ≡ a, because
a : acc x is a proposition

invx : acc x→ ∀y. y < acc x→ acc y
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Undecidability

▶ Let P be a decidable proposition such that ∀n. P n is not decidable
▶ for example, P n := Turing machine M runs for at least n steps

▶ Suppose h0 : acc> 0, that is, 0 :N is accessible via the > relation. (This is
provably false.)

▶ We can define a function f : ∀x :N. acc> x→N by recursion on acc> such that

f n h ≡ if P n then f (n + 1) (invn h (n + 1) (p n)) else 0

where p n : n + 1 > n
▶ Then h0 : acc> 0 ⊢ f 0 h0 ≡ 0 is provable iff ∀n. P n is true
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Algorithmic typing judgment

▶ Lean resolves this by underapproximating the ≡ and ⊢ judgments
▶ If we introduce Γ ⊢ e⇔ e′ and Γ ⊩ e : α judgments for “the thing Lean does”,

then Γ ⊩ e : α implies Γ ⊢ e : α and Γ ⊢ e⇔ e′ implies Γ ⊢ e ≡ e′, so Lean is an
underapproximation of the “true” typing judgment

▶ Γ ⊢ e⇔ e′ is not transitive, and Γ ⊩ e : α does not satisfy subject reduction
▶ In practice, this issue is extremely rare and it can be circumvented by inserting

identity functions to help Lean find the transitivity path
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Modeling Lean in ZFC
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DTT in ZFC

▶ There is an “obvious” model of DTT in ZFC, where we treat types as sets and
elements as elements of the sets

▶ The interpretation function ⟦Γ ⊢ e⟧γ (or just ⟦e⟧) translates e into a set when
Γ ⊢ e : α is well typed and γ ∈ ⟦Γ⟧ provides a values for the context

▶ Because of proof irrelevance and the axiom of choice (which implies LEM), we
must have ⟦P⟧ := {∅, {•}}

▶ For all higher universes, we interpret functions as functions, i.e. f ∈ ⟦∀x : α. β⟧
if f is a function with domain ⟦α⟧ such that f (x) ∈ ⟦β⟧x for all x ∈ ⟦α⟧

▶ With this translation, because of inductive types the universes must be very
large (Grothendieck universes). We let ⟦Un+1⟧ = Vκn where κn is the n-th
inaccessible cardinal (if it exists)
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Lean is consistent

Theorem (Soundness)

1. If Γ ⊢ α : P, then ⟦Γ ⊢ α⟧γ ⊆ {•}
2. If Γ ⊢ e : α and lvl(Γ ⊢ α) = 0, then ⟦Γ ⊢ e⟧γ = •.
3. If Γ ⊢ e : α, then there exists k ∈N such that if there are k inaccessible cardinals, then
⟦Γ ⊢ e⟧γ ∈ ⟦Γ ⊢ α⟧γ for all γ ∈ ⟦Γ⟧.

4. If Γ ⊢ e ≡ e′, then there exists k ∈N such that if there are k inaccessible cardinals,
then ⟦Γ ⊢ e⟧γ = ⟦Γ ⊢ e′⟧γ for all γ ∈ ⟦Γ⟧.

▶ As a consequence, Lean is consistent (there is no derivation of ⊥), if ZFC with
ω inaccessibles is consistent.

▶ More precisely, Lean is equiconsistent with
ZFC + {there are n inaccessibles | n < ω}, because Lean models ZFC + n
inaccessibles for all n < ω
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Unique typing
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Unique typing

▶ We used the function lvl(Γ ⊢ α) in the soundness theorem. This is defined as
lvl(Γ ⊢ α) = n iff Γ ⊢ α : Un, and it is well defined on types because of unique
typing and definitional inversion:

Theorem (Unique typing)

If Γ ⊢ e : α and Γ ⊢ e : β, then Γ ⊢ α ≡ β.

Theorem (Definitional inversion)

▶ If Γ ⊢ Um ≡ Un, then m = n.
▶ If Γ ⊢ ∀x : α. β ≡ ∀x : α′. β′, then Γ ⊢ α ≡ α′ and Γ, x : α ⊢ β ≡ β′.
▶ If Γ ⊢ Un . ∀x : α. β.
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Unique typing

Theorem (Unique typing)

If Γ ⊢ e : α and Γ ⊢ e : β, then Γ ⊢ α ≡ β.

▶ Note that this works even in inconsistent contexts! Considering the
undecidability results, this is more than we might expect

▶ False in Coq because of universe cumulativity (possibly there is an analogous
statement?)
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Unique typing
▶ We prove this by induction on the number of alternations between the
Γ ⊢ e : α and Γ ⊢ e ≡ e′ judgments

▶ The induction hypothesis asserts that definitional inversion holds of ⊢n
provability

Definition

▶ Let Γ ⊢0 α ≡ β iff α = β
▶ Let Γ ⊢n+1 α ≡ β iff there is a proof of Γ ⊢ α ≡ β using only Γ ⊢n e : α typing

judgments.
▶ Let Γ ⊢n e : α iff there is a proof of Γ ⊢ e : α using the modified conversion rule

Γ ⊢n e : α Γ ⊢m α ≡ β m ≤ n
Γ ⊢n e : β
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The Church Rosser theorem

Theorem (for the λ-calculus)

If e⇝∗ e1 and e⇝∗ e2, then there exists e′ such that e1, e2⇝∗ e′.

▶ The Church Rosser theorem is false primarily because of proof irrelevance:
there are lots of ways to prove a theorem, and they are all ≡ by proof
irrelevance

▶ Lean’s reduction relation also gets stuck when η reduction interferes with the
computation rule for inductives, for example:

λh : a = a. receq a C e a h⇝η receq a C e a
λh : a = a. receq a C e a h⇝ι λh : a = a. e
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The Church Rosser theorem

Theorem (for Lean)

If Γ ⊢ e : α, and Γ ⊢ e⇝∗κ e1, e2, then there exists e′1, e
′

2 such that Γ ⊢ ei⇝∗κ e′i and
Γ ⊢ e′1 ≡p e′2.

▶ The statement uses two new relations, the κ reduction⇝κ and proof
equivalence ≡p.

▶ ⇝κ is a more aggressive version of Lean’s reduction relation that unfolds
subsingleton eliminators even on variables

▶ ≡p is “equality except at proof arguments” with η conversion.

Γ ⊢ e : α
Γ ⊢ e ≡p e

Γ, x : α ⊢ e ≡p e′ x
Γ ⊢ λx : α. e ≡p e′

Γ ⊢ p : P Γ ⊢ h, h′ : p
Γ ⊢ h ≡p h′

. . .
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The Church Rosser theorem

▶ The⇝κ reduction will reduce recacc C f x h (where h : acc< x) to

f x (invx h) (λy h′. recacc C f y (invx h y h′))

so it is not strongly or weakly normalizing
▶ So it is similar to the untyped lambda reduction in that by allowing infinite

reduction we open the possibility of bringing divergent reductions back
together (within ≡p)

▶ The proof of Church-Rosser as stated uses the Tait–Martin-Löf method (using
a parallel reduction relation≫κ and its almost deterministic analogue≫κ)
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Future work

▶ More model theory of Lean (prove unprovability of
f == g→ x == y→ f x == g y, prove that equality of types is only
disprovable when the types have different cardinalities)

▶ Figure out how the VM evaluation model relates to the Lean reduction
relation, define the type erasure map and show that VM evaluation of a well
typed term gets the right answer
▶ Solid theory for VM overrides?

▶ Prove strong normalization
▶ Formalize the present results in Lean

Thank you!

https://github.com/digama0/lean-type-theory
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�����Future Past work

▶ My paper is now a standard reference for LeanTT
▶ The model theory of Lean is still not formalized, but the main results are now

common knowledge (c.f. the cardinality model)
▶ VM reduction is still open (but see Sozeau et al.1 in Coq)
▶ Strong normalization is false2

▶ Formalize the present results in Lean: Lean4Lean

https://github.com/digama0/lean4lean

1Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Botsch Nielsen, Nicolas
Tabareau, et al. Correct and Complete Type Checking and Certified Erasure for Coq, in Coq (2023)

2Andreas Abel, Thierry Coquand. Failure of Normalization in Impredicative Type Theory with
Proof-Irrelevant Propositional Equality (2020)
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Bootstrapping Lean

▶ Lean is about 80% written in lean, including:
▶ The parser
▶ The elaborator
▶ The tactic language
▶ The metaprogramming framework
▶ The LSP server

▶ The exceptions are:
▶ The runtime (very small)
▶ The interpreter
▶ Half of the backend of the old compiler
▶ The kernel

▶ Of these, one of them is both mathematically
interesting and soundness critical...
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Lean4Lean

Project goals:
▶ Make a Lean kernel...
▶ which is complete for everything the original can handle
▶ and competitive with the original so that it can be considered as a

replacement.
▶ Write down the type theory of Lean (but formally, in Lean itself)
▶ Prove structural properties about the type system
▶ Prove the correctness of the implementation with respect to the specification
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Lean4Lean

Project goals:
✓ Make a Lean kernel...
✓ which is complete for everything the original can handle
✓ and competitive with the original so that it can be considered as a

replacement.
✓ Write down the type theory of Lean (but formally, in Lean itself)
✓ Prove structural properties about the type system
× Prove the correctness of the implementation with respect to the specification
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The Lean4Lean kernel

▶ A carbon copy of the C++ code
▶ It does all the same fancy tricks as the original, and no more
✓ Union-find data structures for caching
✓ Pointer equality testing
✓ Bidirectional typechecking
✓ Identical def.eq. heuristics
✓ η for structures, nested inductive types
× Naive implementation of substitution and reduction

▶ Suitable for differential fuzzing (e.g. it will get exactly the same counts for
definition unfolding etc.)

▶ Uses Lean’s own Expr type
▶ A few algorithms are reused when they were already available in Lean
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The Lean4Lean kernel

▶ Unexpected benefit: people immediately started hacking on it
▶ David Renshaw: Visualizing reduction3

▶ Rishikesh Vaishnav: Lean4Less4

▶ Lean code is much less scary than C++ for experimentation

3Kernel Reduction Explosion: a surprisingly inefficient computation in Lean 4
(https://www.youtube.com/watch?v=FOt-GsiNJmU)

4https://github.com/Deducteam/lean2dk
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The Lean4Lean kernel

lean4export lean4lean ratio
Lean 37.01 s 44.61 s 1.21
��Std Batteries 32.49 s 45.74 s 1.40
Mathlib (+ Std + Lean) 44.54 min 58.79 min 1.32

▶ Performance is about 30% worse than the original
(How good this is depends on your temperament)

▶ Lean itself took hits of a similar order of magnitude when moving the
elaborator out of C++, and that was worth it for the improved extensibility
and development features

▶ It has since clawed back all the performance and then some by implementing
better algorithms that were difficult to get right in C++

▶ I want to experiment with better reduction strategies, this is never going to
happen with the current kernel
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The Type Theory of Lean: Redux

Γ ∋ x : α
l-zero
Γ, x : α ∋ x : α

l-succ
Γ ∋ y : β

Γ, x : α ∋ y : β

Γ ⊢E,n e ≡ e′ : α (Γ ⊢ e : α) ≜ (Γ ⊢ e ≡ e : α)

t-bvar
Γ ∋ x : α

Γ ⊢ x : α

t-symm
Γ ⊢ e ≡ e′ : α

Γ ⊢ e′ ≡ e : α

t-trans
Γ ⊢ e1 ≡ e2 : α Γ ⊢ e2 ≡ e3 : α

Γ ⊢ e1 ≡ e3 : α

t-sort
n ⊢ ℓ, ℓ′ ok ℓ ≡ ℓ′

Γ ⊢ Uℓ ≡ Uℓ′ : USℓ

t-const
ū.(cū : α) ∈ E ∀i, n ⊢ ℓi, ℓ

′

i ok ∧ ℓi ≡ ℓ
′

i

Γ ⊢ cℓ̄ ≡ cℓ̄′ : α[ū 7→ ℓ̄]

t-lam
Γ ⊢ α ≡ α′ : Uℓ Γ, x : α ⊢ e ≡ e′ : β

Γ ⊢ (λx : α. e) ≡ (λx : α′. e′) : ∀x : α. β
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The Type Theory of Lean: Redux

t-all
Γ ⊢ α ≡ α′ : Uℓ1 Γ, x : α ⊢ β ≡ β′ : Uℓ2

Γ ⊢ (∀x : α. β) ≡ (∀x : α′. β′) : Uimax(ℓ1,ℓ2)

t-app
Γ ⊢ e1 ≡ e′1 : ∀x : α. β Γ ⊢ e2 ≡ e′2 : α

Γ ⊢ e1 e2 ≡ e′1 e′2 : β[x 7→ e2]

t-conv
Γ ⊢ α ≡ β : Uℓ Γ ⊢ e ≡ e′ : α

Γ ⊢ e ≡ e′ : β

t-beta
Γ, x : α ⊢ e : β Γ ⊢ e′ : α

Γ ⊢ (λx : α. e) e′ ≡ e[x 7→ e′] : β[x 7→ e′]

t-eta
Γ ⊢ e : ∀y : α. β

Γ ⊢ (λx : α. e x) ≡ e : ∀y : α. β

t-proof-irrel
Γ ⊢ p : U0 Γ ⊢ h : p Γ ⊢ h′ : p

Γ ⊢ h ≡ h′ : p

t-extra
ū.(e ≡ e′ : α) ∈ E ∀i, n ⊢ ℓi ok

Γ ⊢ e[ū 7→ ℓ̄] ≡ e′[ū 7→ ℓ̄] : α[ū 7→ ℓ̄]
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The Type Theory of Lean: Redux

▶ The typing judgments Γ ⊢ e : α and Γ ⊢ e ≡ e′ are now combined into one
judgment Γ ⊢ e ≡ e′ : α
▶ (Γ ⊢ e : α) ≜ (Γ ⊢ e ≡ e : α)
▶ (Γ ⊢ e ≡ e′) ≜ ∃α. (Γ ⊢ e ≡ e′ : α)

▶ (These definitions are still subject to change)
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Theorems and conjectures

Theorem (Basics)

▶ If Γ ⊢ e ≡ e′ : α, then e, e′, and α are well-scoped (all free variables have indices less
than |Γ|).

▶ If Γ,Γ′ ⊢ e ≡ e′ : α, then Γ,∆,Γ′ ⊢ e ≡ e′ : α.

▶ If Γ ⊢E,n e ≡ e′ : α and ∀i. n′ ⊢ ℓi, then
Γ[ū 7→ ℓ̄] ⊢E,n′ e[ū 7→ ℓ̄] ≡ e′[ū 7→ ℓ̄] : α[ū 7→ ℓ̄].

▶ If Γ, x : β ⊢ e1 ≡ e2 : α and Γ ⊢ e0 : β, then
Γ ⊢ e1[x 7→ e0] ≡ e2[x 7→ e0] : α[x 7→ e0].

▶ If Γ, x : α ⊢ e1 ≡ e2 : β and Γ ⊢ α ≡ α′ : Uℓ, then Γ, x : α′ ⊢ e1 ≡ e2 : β.
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Theorems and conjectures

Theorem (Inversion)

▶ If Γ ⊢ (∀x : α. β) : γ then Γ ⊢ α type and Γ, x : α ⊢ β type.
▶ If Γ ⊢ (λx : α. e) : γ then ∃β s.t. Γ ⊢ α type and Γ, x : α ⊢ e : β.

▶ If Γ ⊢E,n Uℓ : γ then n ⊢ ℓ ok.

...
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Theorems and conjectures

Theorem (Types are well-typed)

If Γ ⊢ e : α then Γ ⊢ α type.

Theorem (Substitution w.r.t both arguments)

If Γ, x : α ⊢ f ≡ f ′ : β and Γ, x : α ⊢ a ≡ a′ : α then
Γ ⊢ f [x 7→ a] ≡ f ′[x 7→ a′] : β[x 7→ a].
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Theorems and conjectures
Conjecture (Unique typing)

If Γ ⊢ e : α and Γ ⊢ e : β, then Γ ⊢ α ≡ β.

Conjecture (Definitional inversion)

▶ If Γ ⊢ Um ≡ Un, then m = n.
▶ If Γ ⊢ ∀x : α. β ≡ ∀x : α′. β′, then Γ ⊢ α ≡ α′ and Γ, x : α ⊢ β ≡ β′.
▶ If Γ ⊢ Un . ∀x : α. β.

▶ When formalizing the proof of the above theorems, I found a gap in the proof
▶ I still believe the theorems are true, but the formalization process is not really

clerical work at this point
▶ There is an alternative path to the proof of soundness, but some of the kernel

optimizations depend on this theorem
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Theorems and conjectures

A sneak peek at some recent results, from lemmas leading up to the main theorem:
▶ Γ ⊢ e ≡p e′ is definitional equality using only η and proof irrelevance
▶ Γ ⊢ e≫ e′ is parallel reduction
▶ Γ ⊢ e≫ e′ is complete parallel reduction

Strategy

✓ ≡p is an equivalence relation.
✓ If Γ ⊢ e : α, e≫ e′, and e≫ e•, then there exists e◦ such that Γ ⊢ e′ ≫ e◦ ≡p e•.
× If Γ ⊢ e : α, and e1 ≪κ e≫ e2, then ∃e′1 e′2. e1 ≫ e′1 ≡p e′2 ≪ e2. (Church–Rosser)
× If Γ ⊢ e1 ≡ e2, then ∃e′1 e′2. e1 ≫ e′1 ≡p e′2 ≪ e2.

49 / 52



Inductive types

t-extra
ū.(e ≡ e′ : α) ∈ E ∀i, n ⊢ ℓi ok

Γ ⊢ e[ū 7→ ℓ̄] ≡ e′[ū 7→ ℓ̄] : α[ū 7→ ℓ̄]

▶ Stuffed into the t-extra rule
▶ Still experimenting with ways to express the rules for inductives in a way that

is manageable
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Inductive types
▶ Some successes with using a pattern language to specify the rewrite rules

p ::= cū | p p′ | p x
r ::= e[ū 7→ ℓ̄i] | r r′ | xi

ψ ::= ⊤ | r ≡ r′ ∧ ψ

r-pat
(p⇝ r if ψ) ∈ E e = p[σ] ψ[σ] true ∀i, Γ ⊢ σi ≫ σ′i

Γ ⊢ e≫ r[σ]

subsumes rules like:

P is SS inductive Γ ⊢ intro inv[p, h] : α Γ ⊢ C, e, p, h≫ C′, e′, p′, h′

Γ ⊢ recP C e p h≫ e′c inv[p′, h′] v′
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Summary

▶ You can use Lean4Lean as a replacement for Lean’s kernel today
▶ The formalization is still under active development, not all mathematical

problems are solved yet
▶ Confluence in dependent type theory is a hard problem, and (unlike Coq and

Agda) in Lean we have to tackle typed reduction directly
▶ There are a half dozen people working on MetaCoq, but Lean doesn’t have

enough type theorists involved. If you identify as such, come help out!

https://github.com/digama0/lean4lean
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