

Synthetic category theory in CaTT

Bastiaan Cnossen (Regensburg) Ivan Kobe (Ljubljana)

February 19th, 2026

HoTTTEST seminar talk.

Synthetic category theory: why?

- Homotopy theory “=” $(\infty, 1)$ -category theory.
- Trend towards model-agnostic arguments.
- [Cisinski-C.-Nguyen-Walde]: Build basic theory on model-agnostic language.
- Can do stable homotopy theory, higher algebra, ∞ -topoi,
- Type theory potentially closer to model-agnostic language.

Goal: A type theory for $(\infty, 1)$ -categories

Synthetic category theory: how?

Two prominent approaches, both extending Martin-Löf type theory:

- **Directed type theory** [LH11; Nuy15; Nor19; AN24]: replace identity types $x =_A y$ by asymmetric *hom types* $\text{hom}_A(x, y)$.
- **Simplicial type theory** [RS17; BW23; GWB24]: extend MLTT with new type layers that allow “probing” types, leading to categorical structure (Segal/Rezk types).

Our approach is **radically different**:

- Starting point: language + axioms from [CCNW];
- Find a type theory making these rigorous.

Approach of [CCNW]

Three-step process:

- Formulate axioms in model-agnostic language,
- Build up theory,
- Pick “underlying substrate”.

Approach of [CCNW]

Three-step process:

- Formulate axioms in model-agnostic language,
- Build up theory,
- Pick “underlying substrate”.

Choice of model-agnostic language:

- (1) Primitive notions:

- Structure: $(\infty, 1)$ -categories, functors, natural isos,
- Coherences: Composition, identities, associativity,

- (2) Basic constructors:

- Terminal/initial $(\infty, 1)$ -category;
- (Co)products;
- Pullbacks;
- Functor categories.

(1) Primitives

Structure:

- $(\infty, 1)$ -categories C, D, E, \dots ;
- Given C, D , functors $F, G: C \rightarrow D$;
- Given F, G , natural isomorphisms $\alpha, \beta: F \xrightarrow{\sim} G$;
- Given α, β , 3-isos $H: \alpha \xrightarrow{\sim} \beta$;
- Etcetera

Coherences:

- Composition of functors/natural isos/...
- Unitality, associativity, inverses
- Whiskering, horizontal composition, ...

Ivan's insight: Use Grothendieck-Maltiötis weak $(\omega, 1)$ -categories!

Grothendieck-Maltiniotis weak $(\omega, 1)$ -categories

Globular set:

- Set X_0 of objects ('0-cells')
- For $x, y \in X_0$, a set $X_1(x, y)$ of morphisms ('1-cells')
- For $f, g \in X_1(x, y)$, a set $X_2(f, g)$ of 2-cells
- Etcetera

Weak $(\omega, 1)$ -categories: Globular set with:

- Operations (compositions, whiskerings, ...);
- Coherences (unitality, associativity, ...)

Formulated using Grothendieck's "coherators".

Reformulated using type theories GSeTT/CaTT (Finster-Mimram)
[FM17].

Type theory GSeTT

Judgments:

$$\Gamma \vdash, \quad \Gamma \vdash A, \quad \Delta \vdash \gamma : \Gamma, \quad \Gamma \vdash t : A.$$

Inference rules:

$$\overline{\emptyset \vdash}$$

$$\frac{\Gamma \vdash \quad \Gamma \vdash A \quad x \notin \text{Var}(\Gamma)}{\Gamma, x : A \vdash}$$

$$\frac{\Gamma \vdash}{\Gamma \vdash \star}$$

$$\frac{\Gamma \vdash t : A \quad \Gamma \vdash u : A}{\Gamma \vdash t \rightarrow_A u}$$

$$\frac{\Gamma \vdash}{\Gamma \vdash \langle \rangle : \emptyset}$$

$$\frac{\Delta \vdash \gamma : \Gamma \quad \Gamma, x : A \vdash \quad \Delta \vdash t : A[\gamma]}{\Delta \vdash \langle \gamma, x \mapsto t \rangle : (\Gamma, x : A)}$$

$$\frac{\Gamma \vdash \quad (x : A) \in \Gamma}{\Gamma \vdash x : A}$$

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fwd: } f} y \xrightarrow{\text{down: } \downarrow \alpha} y \xrightarrow{\text{fwd: } g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

The middle term in the first row is a diagram where x and y are connected by two curved arrows: an upper arrow labeled f and a lower arrow labeled f' . Between these two arrows is a vertical arrow labeled $\Downarrow \alpha$.

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x, \quad x \xrightarrow[f]{\Downarrow \alpha} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \quad , \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z \quad , \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

The diagram for the second context shows a node y with three outgoing arrows: an upper arrow labeled f , a lower arrow labeled f' , and a curved arrow labeled $\Downarrow \alpha$ that loops back to the node y .

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

The middle term in the first row is a diagram where x and y are connected by two curved arrows: an upper arrow labeled f and a lower arrow labeled f' . Between these two arrows is a vertical arrow labeled $\Downarrow \alpha$.

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \quad , \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{f} y, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{f'} y, \quad , \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

The middle term in the first row is a diagram where x and y are connected by two curved arrows: an upper arrow labeled f and a lower arrow labeled f' . Between these two arrows is a vertical double-headed arrow labeled $\Downarrow \alpha$.

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z, \quad x$$

The diagram shows a context extension at a 'dangling variable'. The original context is $x \xrightarrow{f} y \xrightarrow{g} z$. A new variable x is introduced, and a curved arrow labeled f points from x to y . A curved arrow labeled f' points from x to y , and a curved arrow labeled α points from y to z . The label 'fancy diagram' is placed between the two curved arrows.

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy curved arrow}} y \xrightarrow{g} z, \quad x \xrightarrow{f} y$$

The middle diagram shows a curved arrow from x to y with a label f above it and f' below it. A vertical arrow labeled $\Downarrow \alpha$ points from f to f' .

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z$$

The middle term in the first row is a diagram where x and y are connected by a curved arrow labeled f above and f' below, and y and z are connected by a straight arrow labeled g . The label $\Downarrow \alpha$ is placed below the curved arrow.

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

The middle term in the first row is a diagram where x and y are connected by two curved arrows: an upper arrow labeled f and a lower arrow labeled f' . Between these two arrows is a vertical arrow labeled $\Downarrow \alpha$.

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Pasting contexts

Question: When should we get coherences?

$$x \xrightarrow{f} y \xrightarrow{g} z, \quad x \xrightarrow{\text{fancy diagram}} y \xrightarrow{g} z, \quad x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

The diagram shows a curved arrow from x to y with a label f above it. Below the arrow, there are two labels: $\Downarrow \alpha$ on the left and f' on the right. The arrow points from x to y .

Answer: Pasting contexts! Generated by two rules:

- Base pasting context: $(x : \star)$
- Context extension at 'dangling variable': $\Gamma, y : A, f : x \rightarrow_A y$.

Rules:

$$\frac{}{(x : \star) \vdash_{\text{ps}} x : \star}$$

$$\frac{\Gamma \vdash_{\text{ps}} f : x \rightarrow_A y}{\Gamma \vdash_{\text{ps}} y : A}$$

$$\frac{\Gamma \vdash_{\text{ps}} x : A}{\Gamma \vdash_{\text{ps}}}$$

$$\frac{\Gamma \vdash_{\text{ps}} x : A}{\Gamma, y : A, f : x \rightarrow_A y \vdash_{\text{ps}} f : x \rightarrow_A y} \text{ when } y, f \notin \text{Var}(\Gamma).$$

Idea: Every pasting context has a unique “total composite”.

$$\frac{\Gamma \vdash_{\text{ps}} \quad \Gamma \vdash u : A \quad \Gamma \vdash v : A}{\Gamma \vdash \text{coh}_{\Gamma, u \rightarrow_A v} : u \rightarrow_A v} (\text{COH})$$

Idea: Every pasting context has a unique “total composite”.

$$\frac{\Gamma \vdash_{\text{ps}} \quad \Gamma \vdash u : A \quad \Gamma \vdash v : A}{\Gamma \vdash \text{coh}_{\Gamma, u \rightarrow_A v} : u \rightarrow_A v} (\text{COH})$$

The side condition (COH) has two cases:

Coherences

Idea: Every pasting context has a unique “total composite”.

$$\frac{\Gamma \vdash_{\text{ps}} \quad \Gamma \vdash u : A \quad \Gamma \vdash v : A}{\Gamma \vdash \text{coh}_{\Gamma, u \rightarrow_A v} : u \rightarrow_A v} (\text{COH})$$

The side condition (COH) has two cases:

$$(\text{COMP}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\partial^-\Gamma) \\ \text{Var}(v : A) = \text{Var}(\partial^+\Gamma) \end{cases}$$

Read: “ u is a total composite of $\partial^-\Gamma$, v is a total composite of $\partial^+\Gamma$ ”

Coherences

Idea: Every pasting context has a unique “total composite”.

$$\frac{\Gamma \vdash_{\text{ps}} \quad \Gamma \vdash u : A \quad \Gamma \vdash v : A}{\Gamma \vdash \text{coh}_{\Gamma, u \rightarrow_A v} : u \rightarrow_A v} (\text{COH})$$

The side condition (COH) has two cases:

$$(\text{COMP}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\partial^-\Gamma) \\ \text{Var}(v : A) = \text{Var}(\partial^+\Gamma) \end{cases}$$

Read: “ u is a total composite of $\partial^-\Gamma$, v is a total composite of $\partial^+\Gamma$ ”

$$(\text{INV}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\Gamma) \\ \text{Var}(v : A) = \text{Var}(\Gamma) \end{cases}$$

Read: “ u and v are total composites of Γ ”

Coherences

Idea: Every pasting context has a unique “total composite”.

$$\frac{\Gamma \vdash_{\text{ps}} \quad \Gamma \vdash u : A \quad \Gamma \vdash v : A}{\Gamma \vdash \text{coh}_{\Gamma, u \rightarrow_A v} : u \rightarrow_A v} (\text{COH})$$

The side condition (COH) has two cases:

$$(\text{COMP}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\partial^-\Gamma) \\ \text{Var}(v : A) = \text{Var}(\partial^+\Gamma) \end{cases}$$

Read: “ u is a total composite of $\partial^-\Gamma$, v is a total composite of $\partial^+\Gamma$ ”

$$(\text{INV}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\Gamma) \\ \text{Var}(v : A) = \text{Var}(\Gamma) \end{cases}$$

Read: “ u and v are (higher coherences between) total composites of Γ ”

Example coherences

Side conditions:

$$(\text{COMP}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\partial^-\Gamma) \\ \text{Var}(v : A) = \text{Var}(\partial^+\Gamma) \end{cases}$$

$$(\text{INV}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\Gamma) \\ \text{Var}(v : A) = \text{Var}(\Gamma) \end{cases}$$

Example coherences

Side conditions:

$$(\text{COMP}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\partial^-\Gamma) \\ \text{Var}(v : A) = \text{Var}(\partial^+\Gamma) \end{cases}$$

$$(\text{INV}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\Gamma) \\ \text{Var}(v : A) = \text{Var}(\Gamma) \end{cases}$$

Examples (COMP):

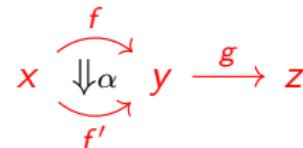
$$x \xrightarrow{f} y \xrightarrow{g} z$$

$$u = x, \quad v = z$$

$$\rightsquigarrow g \circ f \quad (\text{composition})$$

$$x \xrightarrow{f} y \xrightarrow{g} z$$

$\Downarrow \alpha$



$$u = g \circ f, \quad v = g \circ f'$$

$$\rightsquigarrow g \star \alpha \quad (\text{whiskering})$$

Example coherences

Side conditions:

$$(\text{COMP}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\partial^-\Gamma) \\ \text{Var}(v : A) = \text{Var}(\partial^+\Gamma) \end{cases}$$

$$(\text{INV}) \quad \begin{cases} \text{Var}(u : A) = \text{Var}(\Gamma) \\ \text{Var}(v : A) = \text{Var}(\Gamma) \end{cases}$$

Examples (COMP):

$$x \xrightarrow{f} y \xrightarrow{g} z$$

$$u = x, \quad v = z$$

$$\rightsquigarrow g \circ f \quad (\text{composition})$$

$$x \xrightarrow{f} y \xrightarrow{g} z$$

$\Downarrow \alpha$

$$u = g \circ f, \quad v = g \circ f'$$

$$\rightsquigarrow g \star \alpha \quad (\text{whiskering})$$

Example (INV):

$$x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$$

$$u = h \circ (g \circ f), \quad v = (h \circ g) \circ f$$

$$\rightsquigarrow \text{assoc}_{h,g,f} \quad (\text{associator})$$

From quasicategories to weak $(\omega, 1)$ -categories

Upshot: Have type theory whose models are weak $(\omega, 1)$ -categories.

Question: Why do we care?

From quasicategories to weak $(\omega, 1)$ -categories

Upshot: Have type theory whose models are weak $(\omega, 1)$ -categories.

Question: Why do we care?

Theorem (C.-Kobe)

Every quasicategory defines a weak $(\omega, 1)$ -category.

In particular, the quasicategory $\text{Cat}_{(\infty, 1)}$ of (small) $(\infty, 1)$ -categories defines an $(\omega, 1)$ -category.

From quasicategories to weak $(\omega, 1)$ -categories

Upshot: Have type theory whose models are weak $(\omega, 1)$ -categories.

Question: Why do we care?

Theorem (C.-Kobe)

Every quasicategory defines a weak $(\omega, 1)$ -category.

In particular, the quasicategory $\text{Cat}_{(\infty, 1)}$ of (small) $(\infty, 1)$ -categories defines an $(\omega, 1)$ -category.

Next up: Formulate basic axioms in CaTT.

(2) Basic constructors

Idea: Define constructors via universal properties:

- An object x is *terminal* if for every y there is a *unique* $y \rightarrow x$;
- A *product* $x \times y$ of x and y comes with $\text{pr}_1: x \times y \rightarrow x$ and $\text{pr}_2: x \times y \rightarrow y$, such that for $f: z \rightarrow x$ and $g: z \rightarrow y$ there is a *unique* $(f, g): z \rightarrow x \times y$ s.t. $f \cong \text{pr}_1 \circ (f, g)$ and $g \cong \text{pr}_2 \circ (f, g)$.
- A *pullback* $x \times_z y$ is ...
- ...

(2) Basic constructors

Idea: Define constructors via universal properties:

- An object x is *terminal* if for every y there is a *unique* $y \rightarrow x$;
- A *product* $x \times y$ of x and y comes with $\text{pr}_1: x \times y \rightarrow x$ and $\text{pr}_2: x \times y \rightarrow y$, such that for $f: z \rightarrow x$ and $g: z \rightarrow y$ there is a *unique* $(f, g): z \rightarrow x \times y$ s.t. $f \cong \text{pr}_1 \circ (f, g)$ and $g \cong \text{pr}_2 \circ (f, g)$.
- A *pullback* $x \times_z y$ is ...
- ...

Uniqueness of a term $x : A$ in CaTT means:

- Existence of such $x : A$;
- For every two $x, y : A$ a unique term $\alpha : x \rightarrow_A y$.

(Semantically: the type A is 'weakly contractible').

Terminal object $1 : \star$

Idea: Every 'iterated hom-type' of $x \rightarrow_* 1$ is inhabited.

Terminal object $1 : \star$

Idea: Every 'iterated hom-type' of $x \rightarrow_* 1$ is inhabited.

Iterated hom types of a type:

The judgment $\partial^*(B) \equiv A$ ("B is an iterated hom type of A") is defined by:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \partial^*(A) \equiv A} \quad \frac{\Gamma \vdash \partial^*(B) \equiv A \quad \Gamma \vdash t, u : B}{\Gamma \vdash \partial^*(t \rightarrow_B u) \equiv A}$$

Terminal object $1 : \star$

Idea: Every 'iterated hom-type' of $x \rightarrow_* 1$ is inhabited.

Iterated hom types of a type:

The judgment $\partial^*(B) \equiv A$ ("B is an iterated hom type of A") is defined by:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \partial^*(A) \equiv A} \quad \frac{\Gamma \vdash \partial^*(B) \equiv A \quad \Gamma \vdash t, u : B}{\Gamma \vdash \partial^*(t \rightarrow_B u) \equiv A}$$

The rules:

$$\frac{\Gamma \vdash}{\Gamma \vdash 1 : \star} \quad \frac{\Gamma \vdash \partial^*(B) \equiv (x \rightarrow_* 1)}{\Gamma \vdash !_B : B}$$

Terminal object $1 : \star$

Idea: Every 'iterated hom-type' of $x \rightarrow_* 1$ is inhabited.

Iterated hom types of a type:

The judgment $\partial^*(B) \equiv A$ ("B is an iterated hom type of A") is defined by:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \partial^*(A) \equiv A} \quad \frac{\Gamma \vdash \partial^*(B) \equiv A \quad \Gamma \vdash t, u : B}{\Gamma \vdash \partial^*(t \rightarrow_B u) \equiv A}$$

The rules:

$$\frac{\Gamma \vdash}{\Gamma \vdash 1 : \star} \quad \frac{\Gamma \vdash \partial^*(B) \equiv (x \rightarrow_* 1)}{\Gamma \vdash !_B : B}$$

- Have $!_{x \rightarrow 1} : x \rightarrow 1$;
- For $f, g : x \rightarrow 1$, have $!_{f \rightarrow g} : f \rightarrow g$ and $!_{g \rightarrow f} : g \rightarrow f$;
- Have $\text{id}_f \rightarrow (!_{g \rightarrow f}) \circ (!_{f \rightarrow g})$, etcetera...

Products $x \times y : \star$

Idea: Get term of iterated hom type of $z \rightarrow x \times y$ by specifying “both components”.

Products $x \times y : \star$

Idea: Get term of iterated hom type of $z \rightarrow x \times y$ by specifying “both components”.

- For $f : z \rightarrow x$, $g : z \rightarrow y$, get $(f, g) : z \rightarrow x \times y$;

Products $x \times y : \star$

Idea: Get term of iterated hom type of $z \rightarrow x \times y$ by specifying “both components”.

- For $f : z \rightarrow x, g : z \rightarrow y$, get $(f, g) : z \rightarrow x \times y$;
- For $h, k : z \rightarrow x \times y, \alpha : \text{pr}_1 \circ h \rightarrow \text{pr}_1 \circ k, \beta : \text{pr}_2 \circ h \rightarrow \text{pr}_2 \circ k$, get $(\alpha, \beta) : h \rightarrow k$;

Products $x \times y : \star$

Idea: Get term of iterated hom type of $z \rightarrow x \times y$ by specifying “both components”.

- For $f : z \rightarrow x$, $g : z \rightarrow y$, get $(f, g) : z \rightarrow x \times y$;
- For $h, k : z \rightarrow x \times y$, $\alpha : \text{pr}_1 \circ h \rightarrow \text{pr}_1 \circ k$, $\beta : \text{pr}_2 \circ h \rightarrow \text{pr}_2 \circ k$, get $(\alpha, \beta) : h \rightarrow k$;
- Etcetera...?

Products $x \times y : *$

Idea: Get term of iterated hom type of $z \rightarrow x \times y$ by specifying “both components”.

- For $f : z \rightarrow x$, $g : z \rightarrow y$, get $(f, g) : z \rightarrow x \times y$;
- For $h, k : z \rightarrow x \times y$, $\alpha : \text{pr}_1 \circ h \rightarrow \text{pr}_1 \circ k$, $\beta : \text{pr}_2 \circ h \rightarrow \text{pr}_2 \circ k$, get $(\alpha, \beta) : h \rightarrow k$;
- Etcetera...?

Higher whiskering:

Given $g : y \rightarrow_B z$, we have:

- For $f : x \rightarrow_B y$ a composite $g \circ f : x \rightarrow_B z$;
- For $\alpha : f \rightarrow_{x \rightarrow y} f'$ a whiskering $g \star \alpha : (g \circ f) \rightarrow_{x \rightarrow z} (g \circ f')$
- ...
- For $\alpha : A$ with $\partial^*(A) \equiv (x \rightarrow_B y)$, a *higher whiskering* $g \star \alpha : g \star A$.

Products $x \times y : \star$

Idea: Get term of iterated hom type of $z \rightarrow x \times y$ by specifying “both components”.

- For $f : z \rightarrow x$, $g : z \rightarrow y$, get $(f, g) : z \rightarrow x \times y$;
- For $h, k : z \rightarrow x \times y$, $\alpha : \text{pr}_1 \circ h \rightarrow \text{pr}_1 \circ k$, $\beta : \text{pr}_2 \circ h \rightarrow \text{pr}_2 \circ k$, get $(\alpha, \beta) : h \rightarrow k$;
- Etcetera...?

Products $x \times y : \star$

Idea: Get term of iterated hom type of $z \rightarrow x \times y$ by specifying “both components”.

- For $f : z \rightarrow x, g : z \rightarrow y$, get $(f, g) : z \rightarrow x \times y$;
- For $h, k : z \rightarrow x \times y, \alpha : \text{pr}_1 \circ h \rightarrow \text{pr}_1 \circ k, \beta : \text{pr}_2 \circ h \rightarrow \text{pr}_2 \circ k$, get $(\alpha, \beta) : h \rightarrow k$;
- Etcetera...?

The rules:

$$\frac{\Gamma \vdash x : \star \quad \Gamma \vdash y : \star}{\Gamma \vdash x \times y : \star}$$

$$\frac{\Gamma \vdash \partial^*(A) \equiv (z \rightarrow_{\star} x \times y) \quad \Gamma \vdash f : \text{pr}_1 \star A \quad \Gamma \vdash g : \text{pr}_2 \star A}{\Gamma \vdash (f, g) : A}$$
$$\frac{\Gamma \vdash (f, g) : A}{\Gamma \vdash \text{coh}_1^{\times}(f, g) : f \xrightarrow{\sim} \text{pr}_1 \star (f, g)}$$
$$\frac{\Gamma \vdash (f, g) : A}{\Gamma \vdash \text{coh}_2^{\times}(f, g) : g \xrightarrow{\sim} \text{pr}_2 \star (f, g)}$$

Pullbacks $x \times_z y : \star$

Idea: Axiomatize universal cone for $x \rightarrow z \leftarrow y$.

Pullbacks $x \times_z y : \star$

Idea: Axiomatize universal cone for $x \rightarrow z \leftarrow y$.

Execution more difficult: need ‘whiskering of cones’.

Pullbacks $x \times_z y : \star$

Idea: Axiomatize universal cone for $x \rightarrow z \leftarrow y$.

Execution more difficult: need ‘whiskering of cones’.

More generally: need whiskering of suitable “cone types”

$A = (A_1, \dots, A_n)$. Can introduce a “universal cone” for each cone type.

Pullbacks $x \times_z y : \star$

Idea: Axiomatize universal cone for $x \rightarrow z \leftarrow y$.

Execution more difficult: need ‘whiskering of cones’.

More generally: need whiskering of suitable “cone types”

$A = (A_1, \dots, A_n)$. Can introduce a “universal cone” for each cone type.

We make heavy use of the “naturality construction” by
Benjamin–Markakis–Offord–Sarti–Vicary.

Pullbacks $x \times_z y : \star$

Idea: Axiomatize universal cone for $x \rightarrow z \leftarrow y$.

Execution more difficult: need ‘whiskering of cones’.

More generally: need whiskering of suitable “cone types”

$A = (A_1, \dots, A_n)$. Can introduce a “universal cone” for each cone type.

We make heavy use of the “naturality construction” by
Benjamin–Markakis–Offord–Sarti–Vicary.

Details omitted.

Internal homs $[x, y] : \star$

Idea: Comes with $\text{ev}: [x, y] \times x \rightarrow y$. For $f: z \rightarrow [x, y]$, obtain its *uncurrying* f^u :

$$z \times x \xrightarrow{f \times \text{id}_x} [x, y] \times x \xrightarrow{\text{ev}} y.$$

Universal property: for every $g: z \times x \rightarrow y$, there is a *unique currying* $g_c: z \rightarrow [x, y]$ with $(g_c)^u \cong g$.

Internal homs $[x, y] : \star$

Idea: Comes with $\text{ev} : [x, y] \times x \rightarrow y$. For $f : z \rightarrow [x, y]$, obtain its *uncurrying* f^u :

$$z \times x \xrightarrow{f \times \text{id}_x} [x, y] \times x \xrightarrow{\text{ev}} y.$$

Universal property: for every $g : z \times x \rightarrow y$, there is a *unique currying* $g_c : z \rightarrow [x, y]$ with $(g_c)^u \cong g$.

The rules:

$$\frac{\vdash x : \star \quad \vdash y : \star}{\begin{array}{l} \vdash [x, y] : \star \\ \vdash \text{ev} : [x, y] \times x \rightarrow y \end{array}}$$

$$\frac{\begin{array}{l} \vdash \partial^*(A) \equiv (z \rightarrow_\star [x, y]) \\ \vdash g : \text{ev} \star (A \times x) \end{array}}{\begin{array}{l} \vdash g_c : A \\ \vdash \text{coh}^{[x, y]}(g) : g \rightsquigarrow \text{ev} \star (g_c \times x) \end{array}}$$

Conclusion

Upshot:

Type theory for $(\infty, 1)$ -categories with products/pullbacks/internal homs.

Future:

More synthetic category theory:

- Categories [1] : \star and [2] : \star encoding morphisms/commutative triangles;
- Segal/Rezk conditions;
- Groupoid cores: given $X \rightarrow C$, X groupoid, get unique $X \rightarrow C^{\simeq}$;
- Other category constructors, formulated via $\text{Map}(C, D) := \text{Fun}(C, D)^{\simeq}$.

References I

[AN24] Thorsten Altenkirch and Jacob Neumann. *Synthetic 1-categories in directed type theory*. Preprint, arXiv:2410.19520. 2024. URL: <https://arxiv.org/abs/2410.19520>.

[BW23] Ulrik Buchholtz and Jonathan Weinberger. “Synthetic fibered $(\infty, 1)$ -category theory”. In: *High. Struct.* 7.1 (2023), pp. 74–165.

[FM17] Eric Finster and Samuel Mimram. “A type-theoretical definition of weak ∞ -categories”. English. In: *Proceedings of the 2017 32nd annual ACM/IEEE symposium on logic in computer science, LICS 2017, Reykjavík University, Reykjavík, Iceland, June 20–23, 2017*. Piscataway, NJ: IEEE Press, 2017, p. 12. ISBN: 978-1-5090-3018-7.

References II

[GWB24] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. *Directed univalence in simplicial homotopy type theory*. 2024. arXiv: 2407.09146. URL: <https://arxiv.org/abs/2407.09146>.

[LH11] Daniel R. Licata and Robert Harper. “2-dimensional directed type theory”. In: *Proceedings of the 27th conference on the mathematical foundations of programming semantics (MFPS XXVII), Pittsburgh, PA, USA, May 25–28, 2011*. Amsterdam: Elsevier, 2011, pp. 263–289.

[Nor19] Paige Randall North. “Towards a directed homotopy type theory”. In: *Proceedings of the 35th conference on the mathematical foundations of programming semantics, MFPS XXXV, London, UK, June 4–7, 2019*. Amsterdam: Elsevier, 2019, pp. 223–239.

References III

- [Nuy15] Andreas Nuyts. *Towards a directed homotopy type theory based on 4 kinds of variance*. 2015.
- [RS17] Emily Riehl and Michael Shulman. “A type theory for synthetic ∞ -categories”. In: *High. Struct.* 1.1 (2017), pp. 147–224.