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Introduction

The homotopy groups of spheres are fundamental: they constitute the very
building blocks of homotopy theory

▶ Unfortunately: they are notoriously hard to compute

Imagine if there was a formally verified algorithm which could quickly
compute these...

⇔ Imagine if there was a formalisation of the Serre finiteness theorem in Cubical
Agda...

Good news: now there is! (and that is what this talk is about)
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The Serre finiteness theorem
A key concept is that of types which are stably almost finite (SAF). For now,
let us black-box this definition.

postulate
isSAF : Type → hProp

The main theorem proved by Barton and Campion (and formalised by us) is
the following

Theorem (Barton–Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

▶ Spheres in dimension ≥ 2 happen to be SAF and 1-connected
(and in dimension < 2, their homotopy groups are well known)

Corollary (SFT)

πn(Sm) is finitely presented for all n and m.

Goal now: give a rough idea of what the proof looks like
▶ Need some definitions
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Definitions: homotopy groups and connectedness

Homotopy groups: Recall, for X pointed, we define πn(X ) := ∥Sn →⋆ X∥0
▶ or alternatively: πn(X ) := ∥ΩnX∥0

Connectedness (of types): A type X is said to be n-connected if ∥A∥n is
contractible

▶ Fact: X is n-connected =⇒ πk(X ) vanishes for k < n.

Connectedness (of functions): A function f : X → Y is said to be
n-connected if its fibres are n-connected types

▶ Fact: f is n-connected =⇒ f∗ : πk(X ) → πk(X ) is an iso for k ≥ n and
surjective for k = n − 1
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Definitions: connected covers

Definition

Given a pointed type X , we define its n-connected cover, denoted X ⟨n⟩, to be the
fibre of the truncation map X → ∥X∥n. This gives us a fibre sequence

X ⟨n⟩ proj1−−−→ X
|−|−−→ ∥X∥n

Fact 1: X ⟨n⟩ is, as the name suggests, n-connected

Fact 2: πn(X ⟨n − 1⟩) ∼= πn(X )

Conclusion: if interested in πn(X ), we can always replace X with X ⟨n − 1⟩
which has the additional property of being (n − 1)-connected

▶ Key idea in SFT: compute πn(X ⟨n − 1⟩) instead of πn(X )
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Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!

Axel Ljungström (University of Nottingham) Formalising SFT 6 / 39



Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.

The idea of the SFT proof is very simple:

Want to know πn(X ) where X is SAF (and 1-connected)

This would be ‘‘‘‘easy’’’’ if X were (n − 1)-connected and SAF
▶ follows easily from a result by myself and Pujet – more on this later

No problem (?)
▶ just replace X with X ⟨n − 1⟩!︷ ︸︸ ︷

Once we know X ⟨n − 1⟩ is still SAF,
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Proof idea of SFT

So, to summarise, we need two results:

Theorem A

If X is SAF and 1-connected, then X ⟨n⟩ is SAF for any n ≥ 1

Theorem B

If X is SAF and (n − 1)-connected, then πn(X ) is finitely presentable

These two theorems guide the entire formalisation and also this presentation

Let’s take a look at how this one is proved

↰
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Part I: Proving Theorem A
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Proving Theorem A: almost finiteness
Elephant in the room: what does it mean for a type to be stably almost
finite?

This was one of the first things formalised, primarily by Owen

The definition uses (finite) CW complexes. Black box these for now (this is
what we did in the formalisation):

postulate
isFinCW : Type → hProp

isFinCWFin : (n : N) → isFinCW (Fin n)
isFinCWPushout : (f : A → B) (g : A → C )
→ isFinCW A → isFinCW B → isFinCW C
→ isFinCW (Pushout f g)

isFinCWΣ : {B : A → Type} → isFinCW A
→ ((a : A) → isFinCW (B a)) → isFinCW (Σ A B)

FinCW : Type1 -- universe of finite CW complexes

FinCW = Σ[ A ∈ Type ] (isFinCW A)
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Proving Theorem A: almost finiteness (contd)

Definition (n-finite types)

is -finite : (n : N) → Type → hProp
is n -finite X = ∃[ C ∈ CW ] Σ[ f ∈ (C → X ) ] (isConnectedFun (n - 1) f )

Write Σˆ : (n : N) → Type → Type for iterated suspension

Definition (Stably n-finite types)

is-stably -finite : (n : N) → Type → hProp
is-stably n -finite X = ∃[ m ∈ N ] (is (n + m) -finite (Σˆ m X ))

Definition (Stably almost finite types)

isSAF : Type → hProp
isSAF X = (n : N) → is-stably n -finite X
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Proving Theorem A: intuition behind SAF

The intuition of SAF types is that their homology is finitely presentable

Indeed, we have Hn(X ) ∼= Hn+m(Σ
mX ) ∼= Hn+m(C ) for some m and CW

complex C . The latter group is always finitely presented.

From this point of view, ‘all we need to do’ is to hope to be able to relate
homology groups to homotopy groups (via tools like the Hurewicz theorem)
in order to prove the main theorem

Turns out: by talking about SAF types only, we never actually have to
mention homology in the proof(!)
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Proving Theorem A: Closure properties
Recall, our goal is to prove that X ⟨n⟩ of a SAF type is SAF
This will be deduced via a sequence of closure properties for SAF types

Lemma (Closure of n-finiteness under cofibres)

cofibClosure : (f : X → Y ) → is (n - 1) -finite X → is n -finite Y
→ is n -finite (cofib f )

Proof sketch.
We get a diagram X c Y c

X Y

f c

f

Here, X c and Y c are CW complexes and f c can be deduced to (merely) exist
via a basic connectedness argument

We get an induced (n − 1)-connected map of cofibres cofib f c → cofib f
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Proving Theorem A: closure properties of SAFness

Suspensions commute with cofibres =⇒

Lemma

isSAF-cofib : (f : X → Y ) → isSAF X → isSAF Y → isSAF (cofib f )

Even better (and in non-Agda notation...):

Lemma (2 out of 3)

Let X
f−→ Y → Z be a cofibre sequence (i.e. Z ≃ cofib f ). If 2 types are SAF,

then so is the third.

Lemma
Cartesian products, wedge sums, smash products and joins of SAF types are SAF.
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Proving Theorem A: Ganea construction
The previous page: closure properties for colimit construction
Actually want: closure properties for limit constructions (fibres/loop spaces)
They are proved using the above together with the Ganea construction

Theorem (Ganea)

Let F
j−→ E → B be a fibre sequence with B pointed. There is a fibre sequence

F ∗ ΩB → Cj → B

Apply Ganea to ΩB → 1→ B: get a new fibre sequence

ΩB ∗ ΩB → Ct:ΩB→1 → B

and again
ΩB ∗ ΩB ∗ ΩB → Ct:... → B

and so on... We get a fibre sequence

∗nΩB → En
pn−→ B

where En is an iterated cofibre (a type we understand by lemmas on previous
slide).

B connected =⇒ pn is (n − 1) connected. This is enough to deduce the
results on the following page.
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Proving Theorem A: (more) closure properties of SAFness
In what follows, B is connected we assume there is a fibre sequence F → E → B.

Lemma (Spaces with SAF loop spaces are SAF)

isSAFΩ→isSAF : isSAF (Ω B) → isSAF B

Lemma (Same thing, other direction)

isSAFΩ : isConnected 1 B → isSAF B → isSAF (Ω B)

Consequence: K (G , n) is SAF if G is finitely presentable

Lemma (Total spaces are SAF)

isSAF-total : isSAF B → isSAF (Ω B) → isSAF F → isSAF E

Lemma (Fibres are SAF)

isSAF-fibre : isConnected 1 B → isConnected 0 E
→ isSAF B → isSAF E → isSAF F
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Proof of Theorem A

Using this, we can show the first key theorem (this time in Agda style)

Theorem A

TheoremA : (n : N≥1) → isConnected 1 X → isSAF X → isSAF (X ⟨ n ⟩)

Proof.

Show X ⟨n⟩ and ∥X∥n are SAF mutually by induction on n. Easy using previous
lemma + following two fibre sequences:

K (πn(X ), n)→ ∥X∥n → ∥X∥n−1

X ⟨n⟩ → X → ∥X∥n

Axel Ljungström (University of Nottingham) Formalising SFT 16 / 39



Status check: Formalisation so far

The formalisation includes:

Definition + theory of (finite) CW complexes (postulated so far)

Theory of (stably) n-finite/almost finite spaces
▶ (A lot of) connectedness lemmas
▶ Closure under cofibres
▶ (Co)fibre sequences

Ganea construction

All in all: 8000 lines of code (with some already in Cubical library)

Axel Ljungström (University of Nottingham) Formalising SFT 17 / 39



Status check: Formalisation so far

The formalisation includes:

Definition + theory of (finite) CW complexes (postulated so far)

Theory of (stably) n-finite/almost finite spaces
▶ (A lot of) connectedness lemmas
▶ Closure under cofibres
▶ (Co)fibre sequences

Ganea construction

All in all: 8000 lines of code (with some already in Cubical library)

Axel Ljungström (University of Nottingham) Formalising SFT 17 / 39



Status check: Formalisation so far

The formalisation includes:

Definition + theory of (finite) CW complexes (postulated so far)

Theory of (stably) n-finite/almost finite spaces
▶ (A lot of) connectedness lemmas
▶ Closure under cofibres
▶ (Co)fibre sequences

Ganea construction

All in all: 8000 lines of code (with some already in Cubical library)

Axel Ljungström (University of Nottingham) Formalising SFT 17 / 39



Status check: Formalisation so far

The formalisation includes:

Definition + theory of (finite) CW complexes (postulated so far)

Theory of (stably) n-finite/almost finite spaces
▶ (A lot of) connectedness lemmas
▶ Closure under cofibres
▶ (Co)fibre sequences

Ganea construction

All in all: 8000 lines of code (with some already in Cubical library)

Axel Ljungström (University of Nottingham) Formalising SFT 17 / 39



Status check: Formalisation so far

The formalisation includes:

Definition + theory of (finite) CW complexes (postulated so far)

Theory of (stably) n-finite/almost finite spaces
▶ (A lot of) connectedness lemmas
▶ Closure under cofibres
▶ (Co)fibre sequences

Ganea construction

All in all: 8000 lines of code (with some already in Cubical library)

Axel Ljungström (University of Nottingham) Formalising SFT 17 / 39



Back to the main proof

We showed

Theorem

If X is 1-connected and SAF, then so is X ⟨n⟩ for any n ≥ 1.

and know that πn(X ) ∼= πn(X ⟨n − 1⟩) (*).

In the end, we want:

Theorem

If X is SAF and 1-connected, then πn(X ) is finitely presentable (n ≥ 2).

With (∗), enough to show

Theorem B

If X is SAF and (n − 1)-connected, then πn(X ) is finitely presentable (≥ 2).
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The weak Hurewicz theorem

Let’s inspect the premise of theorem further:

X is (n − 1)-connected =⇒ πn(X ) ∼= πn+m(Σ
mX ) for any m (Freudenthal).

X is SAF =⇒ Can find m s.t. πn+m(Σ
mX ) ∼= πn+m(C ) for

(n +m − 1)-connected CW complex C .

Together, implies we only need:

Theorem (Weak Hurewicz Theorem)

Given C, an (n − 1)-connected CW complex, πn(C ) is finitely presented
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The weak Hurewicz theorem

Of course, the full Hurewicz theorem (proved in HoTT by Christensen and
Scoccola) implies the weak one. We don’t take this route because:

▶ we haven’t formalised Christensen and Scoccola’s proof
▶ only using weak version gives a completely homology free proof of SFT
▶ but mainly: it was already (almost by accident) about to be formalised by L.

and Löıc Pujet!

Let’s talk a little bit about my project with Löıc (and CW complexes in
general) and its relation to the SFT formalisation

Axel Ljungström (University of Nottingham) Formalising SFT 20 / 39



Part II: CW complexes and the Hurewicz theorem
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2023, in a universe parallel to Carnegie Mellon University...

Anders Mörtberg gets a new postdoc: Löıc Pujet
▶ Idea for a project: reduce complex Brunerie number computation to linear

algebra by developing cellular (co)homology in HoTT

Anders goes on parental leave.
▶ Löıc and I decide to use this time to develop the key theory of CW complexes

we’ll need for our projects
▶ Our goal: develop enough theory to be able to prove the Hurewicz theorem

(as a kind of long-term goal/sanity check)

▶ Swedish parental leave =⇒ Löıc and I have time to get quite far and end up
writing a paper on these developments

Anders is back, gets me more involved with the SFT project. Reminds me
that Reid and Owen need a version of the Hurewicz theorem.

I show Reid our paper and he spots the weak Hurewicz theorem – although
it’s only every mentioned implicitly in the middle of our Hurewicz theorem
proof

▶ He notices it’s just strong enough to reproduce the SFT proof but without
ever appealing to homology computations!
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My paper with Löıc

In addition to the above, my work with Löıc fills the gaps we’ve left open so
far in the SFT proof. Key contributions:

▶ A workable definition of CW complexes
▶ Basic constructions. In particular: pushouts of CW complexes
▶ The ‘Hurewicz approximation theorem’ (a characterisation of low dimensional

skeleta of n-connected CW complexes)
⋆ This + computation of homotopy groups of a certain class of pushouts = weak

Hurewicz Theorem

Also, a bunch of stuff about cellular homology

Let’s take a look at what we did!

Axel Ljungström (University of Nottingham) Formalising SFT 23 / 39



My paper with Löıc
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Löıc paper: CW complexes
CW complexes are defined as follows. Very implementation sensitive!

Definition (CW structures)

record CWStr : Type1 where
field
-- Unerlying sequence of types

Skel : (n : N−1) → Type
ι : (n : N−1) → Skel n → Skel (succ n)

-- Number of cells in each dimension

CellSize : N → N

-- attaching maps

α : (n : N) → S (n -1) × Fin (CellSize n) → Skel (n -1)

-- axioms

Skel−1 : ¬ (Skel -1)
Skel+Pushout : (n : N) → Skel n ≃ Pushout (α n) snd

Sn−1 × Fin(CellSize n) Fin(CellSize n)

Skeln−1 Skeln

snd

αn

⌟
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Löıc paper: CW complexes

Definition (Finite CW structures)

-- Finite CW structures of a given dimension

isFinCWStr ofDim : CWStr → N−1 → hProp
isFinCWStr X ofDim n = (m : N−1) → n ≤ m → isEquiv (ι X n)

-- Finite CW structures

isFinCWStr : CWStr → hProp
isFinCWStr X = ∃[ n ∈ N−1 ] (isFinCWStr X ofDim n)

Definition (Finite CW complexes)

-- Property of (a type) being a finite CW complex

isFinCW : Type → hProp
isFinCW X = ∃[ S ∈ CWStr ] (isFinCWStr S × colim S ≃ X )

-- Universe of finite CW complexes

FinCW : Type1
FinCW = Σ[ A ∈ Type ] (isFinCW A)
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Löıc paper: Pushouts

We can, of course, remove the finiteness assumption to get a more general
class CW.

Theorem

Given a span of CW complexes B
f←− A

g−→ C, where A is finite, its pushout is
again a CW complex (finite if B and C are).

Proof.

Needs a (constructive version) of the cellular approximation theorem + a bunch of
technical path algebra.

This was crucial in the SFT proof and only postulated until now!
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Definition (Hurewicz CW structures)

record hasHurewiczStr (X : CWStr) (n : N−1) : Type1 where
open CWStr X
field
lowSkelVanish : (m : N) → m ≤ n → isContr (Skel m)

A : FinSet
B : FinSet
-- f :

∨
A Sn+¹ →

∨
B Sn+¹

f : ∨ A (S (succ n)) →· ∨ B (S (succ n))

-- Xn+1 ≃
∨

A Sn+¹
bottomLevel : Skel (succ n) ≃ ∨ A (S (succ n))
-- Xn+2 ≃ cofib (f :

∨
A Sn+¹ →

∨
B Sn+¹)

bottomLevel+1 : Skel (succ (succ n)) ≃ cofib f

Definition (Hurewicz connectedness)

isHurewiczConnected : (n : N−1) → Type → hProp
isHurewiczConnected n X = ∃[ X’ ∈ CWStr ] (hasHurewiczStr X’ n) × (colim X’ ≃ X )

Axel Ljungström (University of Nottingham) Formalising SFT 27 / 39



Löıc paper: Hurewicz connectedness

Significance: if X is Hurewicz n-connected, we (merely) have some
f :

∨
A Sn+1 →⋆

∨
B S

n+1 and

πn+1(X ) ∼= πn+1(Xn+2) ∼= πn+1(cofib f)

We can compute the ‘degree’ of such a map f.

deg(f) : Hom(Z[A],Z[B])

Theorem

πab
n+1(cofib f) ∼= Z[B]/im(deg(f))

← this is what it means to be finitely presented

Proof.
Direct computation when n = 0 and Blakers–Massey when n > 0.
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Löıc paper: the weak Hurewicz theorem

Theorem (Weak(er) Hurewicz theorem)

Given X , an (n− 1)-Hurewicz connected CW complex, πn(X ) is finitely presented

Theorem (Hurewicz approximation theorem)

A CW complex X is Hurewicz n-connected iff it is n-connected
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Summarising the proof of Serre finiteness

So, let’s put everything together:

Let X be 1-connected and SAF and fix n ≥ 2

πn(X ) ∼= πn(X ⟨n − 1⟩)
X is SAF =⇒ X ⟨n − 1⟩ is SAF and (n − 1)-connected
=⇒ πn(X ⟨n − 1⟩) ∼= πn(C ) for (n − 1)-connected CW complex C .

So πn(C ) is FP by the weak Hurewicz theorem. Hence we have the main
theorem:

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then πn(X ) is finitely
presented for n ≥ 2.
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Part III: On the formalisation and some lessons I’ve
learnt
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Lessons learnt: Finicking about with Fin

Lesson 1
Implementation of Fin matters when formalising things like finite subsequences
(e.g. finite subcomplexes of a CW complex)

To avoid transport hell, we want equations like the following to hold definitionally:

Fin(suc n) Fin(suc (suc n))

Fin(n) Fin(suc n)

+1

+1

Indexed-inductive version: reasonable but not supported in Cubical Agda
‘Standard’ definition: Fin(n) := Σm:N(m < n) only behaves nicely if < is
appropriately defined:

▶ Bad: m < n = Σ[ x ∈ N ] ((suc x) + m ≡ n)
▶ Good:

< : N → N → hProp
a < zero = ⊥
zero < suc b = ⊤
suc a < suc b = a < b
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Lessons learnt: universe polymorphism

Lesson 2
Be universe polymorphic from the start

Just do it...

...even if it forces you do define things like this:

ℓ-maxList : List Level → Level
ℓ-maxList [] = ℓ-zero
ℓ-maxList (ℓ :: ℓs) = ℓ-max ℓ (ℓ-maxList ℓs)
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Lessons learnt: generality vs strictness

Lesson 3
Sacrificing generality in a definition can often lead to better computational
behaviour... But don’t exclude the option of having both!

Example: Def of finite CW complexes

Pros of recursive definition:
▶ pushout equation holds definitionally

Pros of our definition:
▶ flexibility; for instance, it is easier to make alterations to CW structures (e.g.

swapping out the n-skeleton for something else without affecting any higher
skeleta).

▶ works for infinite complexes too

Strict pushout equation is very tempting but we still wish to go with our
definition. Solution: define a strictification functor (if possible)

strictify : CW → CW

s.t. X ≃ strictify X but the latter type enjoys the desired strict equalities.
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Lessons learnt: encode-decode is your friend

Lesson 4

Encode-decode works for πab
1 too

Example: needed to compute πab
1 (

∨
A S

1)

Can use Seifert–Van Kampen but that requires a bunch of set-up (and some
algebra)

Can be computed completely ‘homotopy-theoretically’ (and very directly)
using encode-decode

To make it work for πab
1 instead of π1, just swap the identity type for the

following

data ≡ab (x y : A) : Type
where

[ ] : x ≡ y → x ≡ab y

com : (p q r : x ≡ y) → [ p · q −¹ · r ] ≡ [ r · q −¹ · p ]

and carry out the encode-decode they way you’re used to.
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Formalisation

The formalisation is available at
https://github.com/CMU-HoTT/serre-finiteness

Just under 10k LOC here but this excludes most of the work on CW
complexes and many other results from the Cubical library

Plan: get it merged into the Cubical Agda library.

Material on CW complexes by Löıc and me: available in the library already.
See https://github.com/agda/cubical/tree/master/Cubical/CW in
particular
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So what about computations?

So now that this has been formalised, this means that we can plug any fixed
πn(S

m) into Agda and compute a list of integers (r0, r1, . . . rk) s.t.

πn(S
m) ∼= Zr0 × Π1≤i≤k(Z/mri Z)

*Insert meme with Guillaume Brunerie*

Haven’t even been able to get the number of generators of π2(S
2)
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Future work: improving the result

Technically, we have only proved the mere existence of the list of integers and
isomorphism mentioned on the previous page

We can get out of the propositional truncation by proving an appropriate
uniqueness result – this needs a proof of the uniqueness of the Smith normal
form

Has been done before, but not in Cubical Agda. Not crucial, but would be
cool to have!
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Thanks!

Axel Ljungström (University of Nottingham) Formalising SFT 39 / 39


	Part I: Proving Theorem A
	Part II: CW complexes and the Hurewicz theorem
	Part III: On the formalisation and some lessons I've learnt
	Thanks!

