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Introduction

@ The homotopy groups of spheres are fundamental: they constitute the very
building blocks of homotopy theory

» Unfortunately: they are notoriously hard to compute

@ Imagine if there was a formally verified algorithm which could quickly
compute these...
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Introduction

@ The homotopy groups of spheres are fundamental: they constitute the very
building blocks of homotopy theory

» Unfortunately: they are notoriously hard to compute
in theory

@ Imagine if there was a formally verified algorithm which could guiekly
compute these...

< Imagine if there was a formalisation of the Serre finiteness theorem in Cubical
Agda...

@ Good news: now there is! (and that is what this talk is about)
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The Serre finiteness theorem

@ A key concept is that of types which are stably almost finite (SAF). For now,
let us black-box this definition.

postulate
isSAF : Type — hProp
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The Serre finiteness theorem

@ A key concept is that of types which are stably almost finite (SAF). For now,
let us black-box this definition.

postulate
isSAF : Type — hProp

@ The main theorem proved by Barton and Campion (and formalised by us) is
the following

Theorem (Barton—Campion)

Let X be a 1-connected pointed type. If X is SAF, then m,(X) is finitely
presented for n > 2.

» Spheres in dimension > 2 happen to be SAF and 1-connected
(and in dimension < 2, their homotopy groups are well known)

Corollary (SFT) J

wn(S™) is finitely presented for all n and m.

@ Goal now: give a rough idea of what the proof looks like
> Need some definitions
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Definitions: homotopy groups and connectedness

e Homotopy groups: Recall, for X pointed, we define m,(X) := [|S" —, X]|,
» or alternatively: m,(X) := [|Q"X]|,
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Definitions: homotopy groups and connectedness

e Homotopy groups: Recall, for X pointed, we define m,(X) := [|S" —, X]|,
» or alternatively: m,(X) := [|Q"X]|,
e Connectedness (of types): A type X is said to be n-connected if || A, is
contractible
» Fact: X is n-connected = (X)) vanishes for k < n.

o Connectedness (of functions): A function f : X — Y is said to be
n-connected if its fibres are n-connected types

» Fact: f is n-connected = f, : m(X) — m(X) is an iso for k > n and
surjective for k =n—1
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Definitions: connected covers

Definition
Given a pointed type X, we define its n-connected cover, denoted X (n), to be the
fibre of the truncation map X — || X||,. This gives us a fibre sequence

X(n) 22 x H x|,
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Definitions: connected covers

Definition
Given a pointed type X, we define its n-connected cover, denoted X (n), to be the
fibre of the truncation map X — ||X||,. This gives us a fibre sequence

X(n) 22 x H x|,

e Fact 1: X(n) is, as the name suggests, n-connected

e Fact 2: 7,(X(n—1)) 2 m,(X)

@ Conclusion: if interested in 7,(X), we can always replace X with X(n — 1)
which has the additional property of being (n — 1)-connected

» Key idea in SFT: compute 7,(X(n — 1)) instead of m,(X)
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Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then w,(X) is finitely
presented for n > 2.
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Proof idea of SFT

Recall the main theorem

Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then m,(X) is finitely
presented for n > 2.

The idea of the SFT proof is very simple:
@ Want to know 7,(X) where X is SAF (and 1-connected)
@ This would be ““*‘easy’"" if X were (n — 1)-connected and SAF
> follows easily from a result by myself and Pujet — more on this later
@ No problem (?)
> just replace X with X(n — 1)!
Once we know X{n — 1) is still SAF,
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Proof idea of SFT

So, to summarise, we need two results:

Theorem A
If X is SAF and 1-connected, then X(n) is SAF for any n > 1

Theorem B
If X is SAF and (n — 1)-connected, then ,(X) is finitely presentable

These two theorems guide the entire formalisation and also this presentation
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Proof idea of SFT

Theorem A
If X is SAF and 1-connected, then X(n) is SAF for any n > 1 J

Let's take a look at how this one is proved =
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Part |: Proving Theorem A
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Proving Theorem A: almost finiteness

@ Elephant in the room: what does it mean for a type to be stably almost
finite?

@ This was one of the first things formalised, primarily by Owen

@ The definition uses (finite) CW complexes. Black box these for now (this is
what we did in the formalisation):
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@ This was one of the first things formalised, primarily by Owen
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isFinCW : Type — hProp

isFinCWFin : (n: N) — isFinCW (Fin n)
isFinCWPushout : (f: A— B) (g: A— C)
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— isFinCW (Pushout f g)
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Proving Theorem A: almost finiteness

@ Elephant in the room: what does it mean for a type to be stably almost
finite?

@ This was one of the first things formalised, primarily by Owen

@ The definition uses (finite) CW complexes. Black box these for now (this is
what we did in the formalisation):

postulate
isFinCW : Type — hProp

isFinCWFin : (n: N) — isFinCW (Fin n)
isFinCWPushout : (f: A— B) (g: A— C)

— isFinCW A — isFinCW B — isFinCW C

— isFinCW (Pushout f g)
isFinCWX : {B : A — Type} — isFinCW A

— ((a: A) — isFinCW (B a)) — isFinCW (X A B)

FinCW : Type; -- universe of finite CW complexes
FinCW = X[ A € Type ] (isFinCW A)
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Proving Theorem A: almost finiteness (contd)

Definition (n-finite types)

is_-finite : (n: N) — Type — hProp
is n -finite X =3[ C € CW ] X[ f € (C — X) ] (isConnectedFun (n - 1) f)
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Proving Theorem A: almost finiteness (contd)

Definition (n-finite types)

is_-finite : (n: N) — Type — hProp
is n -finite X =3[ C € CW ] X[ f € (C — X) ] (isConnectedFun (n - 1) f)
X (is n -Dimensional C) -- may equivalently add

Write £~ (n: N) — Type — Type  for iterated suspension

Definition (Stably n-finite types)

is-stably_-finite : (n : N) — Type — hProp
is-stably n -finite X =3[ m € N ] (is (n + m) -finite (X~ m X))
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Proving Theorem A: almost finiteness (contd)

Definition (n-finite types)

is_-finite : (n: N) — Type — hProp
is n -finite X =3[ C € CW ] X[ f € (C — X) ] (isConnectedFun (n - 1) f)
X (is n -Dimensional C) -- may equivalently add

Write £~ (n: N) — Type — Type  for iterated suspension

Definition (Stably n-finite types)

is-stably_-finite : (n : N) — Type — hProp
is-stably n -finite X =3[ m € N ] (is (n + m) -finite (X~ m X))

Definition (Stably almost finite types)

isSAF : Type — hProp
isSAF X = (n: N) — is-stably n -finite X
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Proving Theorem A: intuition behind SAF

@ The intuition of SAF types is that their homology is finitely presentable

@ Indeed, we have H,(X) = Hppm(X™X) = Hpm(C) for some m and CW
complex C. The latter group is always finitely presented.

@ From this point of view, ‘all we need to do' is to hope to be able to relate

homology groups to homotopy groups (via tools like the Hurewicz theorem)
in order to prove the main theorem

@ Turns out: by talking about SAF types only, we never actually have to
mention homology in the proof(!)
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Proving Theorem A: Closure properties

@ Recall, our goal is to prove that X(n) of a SAF type is SAF
@ This will be deduced via a sequence of closure properties for SAF types

Lemma (Closure of n-finiteness under cofibres)

cofibClosure : (f : X — Y) — is (n - 1) -finite X — is n -finite Y
— is n -finite (cofib f)
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Proving Theorem A: Closure properties

@ Recall, our goal is to prove that X(n) of a SAF type is SAF
@ This will be deduced via a sequence of closure properties for SAF types

Lemma (Closure of n-finiteness under cofibres)

cofibClosure : (f : X — Y) — is (n - 1) -finite X — is n -finite Y
— is n -finite (cofib f)

Proof sketch.
We get a diagram xc i ye

@ Here, X€ and Y< are CW complexes and 7€ can be deduced to (merely) exist
via a basic connectedness argument

© We get an induced (n — 1)-connected map of cofibres cofib f¢ — cofib f

@ We conclude by noting that cofib ¢ is a finite CW complex by closure of
(finite) CW complexes under pushouts O

v
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Proving Theorem A: closure properties of SAFness

Suspensions commute with cofibres —>

Lemma

isSAF-cofib : (f : X — Y) — isSAF X — isSAF Y — isSAF (cofib f)

@ Even better (and in non-Agda notation...):

Lemma (2 out of 3)

Let X £ Y — Z be a cofibre sequence (i.e. Z ~ cofib f). If 2 types are SAF,
then so is the third.

Lemma

Cartesian products, wedge sums, smash products and joins of SAF types are SAF.
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Proving Theorem A: Ganea construction

@ The previous page: closure properties for colimit construction
@ Actually want: closure properties for limit constructions (fibres/loop spaces)
@ They are proved using the above together with the Ganea construction

Theorem (Ganea)

Let F L E — B be a fibre sequence with B pointed. There is a fibre sequence
FxQB— C — B
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Proving Theorem A: Ganea construction

@ The previous page: closure properties for colimit construction
@ Actually want: closure properties for limit constructions (fibres/loop spaces)
@ They are proved using the above together with the Ganea construction

Theorem (Ganea)

Let F L E — B be a fibre sequence with B pointed. There is a fibre sequence
FxQB— C — B

o Apply Ganea to QB — 1 — B: get a new fibre sequence
QOB+« QB — Ciraogs1 — B

and again
QB«QBxQB — C.... —» B

and so on... We get a fibre sequence
«"OB — E, ™5 B
where E, is an iterated cofibre (a type we understand by lemmas on previous
slide).
@ B connected = p, is (n — 1) connected. This is enough to deduce the

results on the following page.
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Proving Theorem A: (more) closure properties of SAFness
In what follows, B is connected we assume there is a fibre sequence F —+ E — B.

Lemma (Spaces with SAF loop spaces are SAF)
iSSAFQ—isSAF : isSAF (Q B) — isSAF B J
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Lemma (Same thing, other direction)

isSAFQ : isConnected 1 B — isSAF B — isSAF (Q B)

e Consequence: K(G,n) is SAF if G is finitely presentable

Lemma (Total spaces are SAF)
isSAF-total : isSSAF B — isSAF (Q B) — isSAF F — isSAF E J
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Lemma (Spaces with SAF loop spaces are SAF)

isSSAFQ—+isSAF : isSAF (Q B) — isSAF B

Lemma (Same thing, other direction)

isSAFQ : isConnected 1 B — isSAF B — isSAF (Q B)

e Consequence: K(G,n) is SAF if G is finitely presentable
Lemma (Total spaces are SAF)

isSAF-total : isSSAF B — isSAF (Q B) — isSAF F — isSAF E

Lemma (Fibres are SAF)

isSSAF-fibre : isConnected 1 B — isConnected 0 E
— isSAF B — isSAF E — isSAF F
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Proof of Theorem A

Using this, we can show the first key theorem (this time in Agda style)
Theorem A

TheoremA : (n: N>1) — isConnected 1 X — isSAF X — isSAF (X(n))

Proof.

Show X (n) and ||X||, are SAF mutually by induction on n. Easy using previous
lemma + following two fibre sequences:

K(ma(X), n) = 1 X1, = 11Xl

X(n) = X = |X|, O
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Status check: Formalisation so far

The formalisation includes:

@ Definition + theory of (finite) CW complexes (postulated so far)
@ Theory of (stably) n-finite/almost finite spaces

> (A lot of) connectedness lemmas
» Closure under cofibres
> (Co)fibre sequences

@ Ganea construction

All'in all: 8000 lines of code (with some already in Cubical library)

Axel Ljungstrom (University of Nottingham) Formalising SFT 17/39



Back to the main proof

We showed

Theorem
If X is 1-connected and SAF, then so is X(n) for any n > 1. J

and know that 7,(X) = 7,(X(n — 1)) (¥).
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Back to the main proof

We showed

Theorem
If X is 1-connected and SAF, then so is X(n) for any n > 1.

and know that 7,(X) = 7,(X(n — 1)) (¥).

@ In the end, we want:

Theorem
If X is SAF and 1-connected, then m,(X) is finitely presentable (n > 2).

e With (%), enough to show
Theorem B

If X is SAF and (n — 1)-connected, then m,(X) is finitely presentable (> 2).

Axel Ljungstrom (University of Nottingham) Formalising SFT
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The weak Hurewicz theorem

@ Let's inspect the premise of theorem further:
@ X is (n— 1)-connected = m,(X) = Tppm(X"X) for any m (Freudenthal).
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The weak Hurewicz theorem

@ Let's inspect the premise of theorem further:
@ X is (n— 1)-connected = m,(X) = Tppm(X"X) for any m (Freudenthal).

e X is SAF = Can find m s.t. Tpym(X"X) = mppm(C) for
(n+ m — 1)-connected CW complex C.

@ Together, implies we only need:

Theorem (Weak Hurewicz Theorem)
Given C, an (n — 1)-connected CW complex, ,(C) is finitely presented J
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The weak Hurewicz theorem

e Of course, the full Hurewicz theorem (proved in HoTT by Christensen and
Scoccola) implies the weak one. We don't take this route because:
» we haven’t formalised Christensen and Scoccola’s proof
> only using weak version gives a completely homology free proof of SFT
> but mainly: it was already (almost by accident) about to be formalised by L.
and Loic Pujet!

o Let's talk a little bit about my project with Loic (and CW complexes in
general) and its relation to the SFT formalisation
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Part Il: CW complexes and the Hurewicz theorem
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2023, in a universe parallel to Carnegie Mellon University...

@ Anders Mortberg gets a new postdoc: Loic Pujet

> Idea for a project: reduce complex Brunerie number computation to linear
algebra by developing cellular (co)homology in HoTT
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> Our goal: develop enough theory to be able to prove the Hurewicz theorem
(as a kind of long-term goal/sanity check)
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2023, in a universe parallel to Carnegie Mellon University...

@ Anders Mortberg gets a new postdoc: Loic Pujet

> ldea for a project: reduce complex Brunerie number computation to linear

algebra by developing cellular (co)homology in HoTT
@ Anders goes on parental leave.

> Loic and | decide to use this time to develop the key theory of CW complexes
we'll need for our projects

> Our goal: develop enough theory to be able to prove the Hurewicz theorem
(as a kind of long-term goal/sanity check)

» Swedish parental leave — Loic and | have time to get quite far and end up
writing a paper on these developments

@ Anders is back, gets me more involved with the SFT project. Reminds me
that Reid and Owen need a version of the Hurewicz theorem.
@ | show Reid our paper and he spots the weak Hurewicz theorem — although

it's only every mentioned implicitly in the middle of our Hurewicz theorem
proof

» He notices it's just strong enough to reproduce the SFT proof but without
ever appealing to homology computations!
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My paper with Loic

@ In addition to the above, my work with Loic fills the gaps we've left open so
far in the SFT proof. Key contributions:
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My paper with Loic

@ In addition to the above, my work with Loic fills the gaps we've left open so
far in the SFT proof. Key contributions:
» A workable definition of CW complexes
» Basic constructions. In particular: pushouts of CW complexes

» The ‘Hurewicz approximation theorem’ (a characterisation of low dimensional
skeleta of n-connected CW complexes)

* This + computation of homotopy groups of a certain class of pushouts = weak
Hurewicz Theorem

@ Also, a bunch of stuff about cellular homology

@ Let’s take a look at what we did!
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Loic paper: CW complexes
@ CW complexes are defined as follows. Very implementation sensitive!

Definition (CW structures)

record CWStr : Type; where
field
-- Unerlying sequence of types
Skel : (n: N_g) — Type
t: (n: N_y) — Skel n — Skel (succ n)

—— Number of cells in each dimension
CellSize : N — N

-- attaching maps

a: (n: N)—S (n-1) x Fin (CellSize n) — Skel (n-1)

-- axioms
Skel_; : — (Skel -1)
Skel{Pushout : (n: N) — Skel n ~ Pushout (a n) snd

Axel Ljungstrom (University of Nottingham) Formalising SFT
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@ CW complexes are defined as follows. Very implementation sensitive!

Definition (CW structures)

record CWStr : Type; where
field
-- Unerlying sequence of types
Skel : (n: N_g) — Type
t: (n: N_y) — Skel n — Skel (succ n)

—— Number of cells in each dimension
CellSize : N — N

-- attaching maps

a: (n: N)—S (n-1) x Fin (CellSize n) — Skel (n-1)

-- axioms
Skel_; : — (Skel -1)
Skel{Pushout : (n: N) — Skel n ~ Pushout (a n) snd

S"~1 x Fin(CellSize n) —"%5 Fin(CellSize n)

anl A
Skelp_y —————— "3 Skel,
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Loic paper: CW complexes

Definition (Finite CW structures)

-- Finite CW structures of a given dimension
isFinCWStr_ofDim_ : CWStr — N_; — hProp
isFinCWStr X ofDim n = (m : N_y) — n < m — isEquiv (v X n)

-- Finite CW structures
isFinCWStr : CWStr — hProp
isFinCWStr X =3[ n € N_; ] (isFinCWStr X ofDim n)

Definition (Finite CW complexes)

-- Property of (a type) being a finite CW complex
isFinCW : Type — hProp
isFinCW X =3[ S € CWStr | (isFinCWStr S x colim S ~ X)

-- Universe of finite CW complexes
FinCW : Type;
FinCW = X[ A € Type ] (isFinCW A)
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Loic paper: Pushouts

@ We can, of course, remove the finiteness assumption to get a more general
class CW.

Theorem

Given a span of CW complexes B fatc , where A is finite, its pushout is
again a CW complex (finite if B and C are).

Proof.
Needs a (constructive version) of the cellular approximation theorem + a bunch of
technical path algebra. ]

v

@ This was crucial in the SFT proof and only postulated until now!
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Definition (Hurewicz CW structures)

record hasHurewiczStr (X : CWStr) (n: N_1) : Type; where
open CWStr X
field
lowSkelVanish : (m: N) — m < n — isContr (Skel m)

A : FinSet

B : FinSet

-— f \/A Sn+1 — VB Sn+1
f:VA(S (succ n)) —- V B (S (succ n))

== Xn1 = Va 8771

bottomLevel : Skel (succ n) ~ V A (S (succ n))
-- Xnt2 =~ cofib (f : \/a 8"t — \/p S7T1)
bottomLevel+1 : Skel (succ (succ n)) ~ cofib f

Definition (Hurewicz connectedness)

isHurewiczConnected : (n: N_;) — Type — hProp
isHurewiczConnected n X = 3[ X’ € CWStr ] (hasHurewiczStr X’ n) x (colim X’ ~ X)
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Loic paper: Hurewicz connectedness
e Significance: if X is Hurewicz n-connected, we (merely) have some
£\, S™ =, Vg S and
Th+1 (X) = 7Tn+]_(Xn+2) = 7Tn+1(COfib f)
@ We can compute the ‘degree’ of such a map f.

deg(f) : Hom(Z[A], Z[B])

Theorem

730, (cofib f) = Z[B]/im(deg(f)) J
Proof.

Direct computation when n = 0 and Blakers—Massey when n > 0. DJ
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e Significance: if X is Hurewicz n-connected, we (merely) have some
£\, S™ =, Vg S and
Th+1 (X) = 7Tn+]_(Xn+2) = 7Tn+1(COfib f)
@ We can compute the ‘degree’ of such a map f.

deg(f) : Hom(Z[A], Z[B])

Theorem
730, (cofib f) = Z[B]/im(deg(f)) < this is what it means to be finitely presentedJ

Proof.
Direct computation when n = 0 and Blakers—Massey when n > 0. DJ
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Loic paper: the weak Hurewicz theorem

Given X, an (n— 1)-Hurewicz connected CW complex, w,(X) is finitely presented

Theorem (Weak(er) Hurewicz theorem) J
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Loic paper: the weak Hurewicz theorem

Theorem (Weak(er) Hurewicz theorem)

Given X, an (n— 1)-Hurewicz connected CW complex, w,(X) is finitely presented

Theorem (Hurewicz approximation theorem)

A CW complex X is Hurewicz n-connected iff it is n-connected
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Loic paper: the weak Hurewicz theorem

Theorem (Weak{er} Hurewicz theorem)
Given X, an (n — 1)-Harewiez connected CW complex, ,(X) is finitely presented

Theorem (Hurewicz approximation theorem)

A CW complex X is Hurewicz n-connected iff it is n-connected
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Summarising the proof of Serre finiteness

So, let's put everything together:
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Summarising the proof of Serre finiteness

So, let's put everything together:
@ Let X be 1-connected and SAF and fix n > 2
o mh(X) Z my(X(n—1))
e X is SAF = X(n—1) is SAF and (n — 1)-connected
= m(X{(n—1)) 2 7m,(C) for (n — 1)-connected CW complex C.
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o mh(X) Z my(X(n—1))

e X is SAF = X(n—1) is SAF and (n — 1)-connected
= (X (n—1)) 2 m,(C) for (n— 1)-connected CW complex C.

@ So m,(C) is FP by the weak Hurewicz theorem. Hence we have the main
theorem:
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Summarising the proof of Serre finiteness

So, let's put everything together:
@ Let X be 1-connected and SAF and fix n > 2
o mp(X) = mp(X(n—1))
e X is SAF = X(n—1) is SAF and (n — 1)-connected
= (X (n—1)) 2 m,(C) for (n— 1)-connected CW complex C.
@ So m,(C) is FP by the weak Hurewicz theorem. Hence we have the main
theorem:
Theorem (Barton-Campion)

Let X be a 1-connected pointed type. If X is SAF, then m,(X) is finitely
presented for n > 2.
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Part Ill: On the formalisation and some lessons |'ve
learnt

Axel Ljungstrom (University of Nottingham) Formalising SFT



Lessons learnt: Finicking about with Fin
Lesson 1

Implementation of Fin matters when formalising things like finite subsequences
(e.g. finite subcomplexes of a CW complex)

To avoid transport hell, we want equations like the following to hold definitionally:

Fin(suc n) — Fin(suc (suc n))

[ [

Fin(n) S — Fin(suc n)
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[ [

Fin(n) —_— Fin(suc n)

@ Indexed-inductive version: reasonable but not supported in Cubical Agda
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Lessons learnt: Finicking about with Fin
Lesson 1

Implementation of Fin matters when formalising things like finite subsequences
(e.g. finite subcomplexes of a CW complex)

To avoid transport hell, we want equations like the following to hold definitionally:

Fin(suc n) — Fin(suc (suc n))

[ [

Fin(n) —_— Fin(suc n)

@ Indexed-inductive version: reasonable but not supported in Cubical Agda
e ‘Standard’ definition: Fin(n) := X,.n(m < n) only behaves nicely if < is
appropriately defined:
» Bad: m<n=%X[x e N]((sucx)+ m=n)
» Good:
<_: N —= N — hProp
a<zero= 1
zero < suc b =T
suca<sucb=a<b

Axel Ljungstrom (University of Nottingham)
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Lessons learnt: universe polymorphism

Lesson 2 ]

Be universe polymorphic from the start

@ Just do it...
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Lessons learnt: universe polymorphism

Lesson 2
Be universe polymorphic from the start

@ Just do it...
@ ...even if it forces you do define things like this:

f-maxList : List Level — Level
{-maxList [| = (-zero
¢-maxList (¢ :: £s) = ¢-max £ (¢-maxList ¢s)

Axel Ljungstrom (University of Nottingham) Formalising SFT
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Lessons learnt: generality vs strictness

Lesson 3

Sacrificing generality in a definition can often lead to better computational
behaviour... But don’t exclude the option of having both!

Example: Def of finite CW complexes
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Sacrificing generality in a definition can often lead to better computational
behaviour... But don’t exclude the option of having both!

Example: Def of finite CW complexes
@ Pros of recursive definition:
» pushout equation holds definitionally
@ Pros of our definition:

» flexibility; for instance, it is easier to make alterations to CW structures (e.g.

swapping out the n-skeleton for something else without affecting any higher
skeleta).

» works for infinite complexes too

Axel Ljungstrom (University of Nottingham) Formalising SFT 34 /39



Lessons learnt: generality vs strictness

Lesson 3

Sacrificing generality in a definition can often lead to better computational
behaviour... But don’t exclude the option of having both!

Example: Def of finite CW complexes
@ Pros of recursive definition:
» pushout equation holds definitionally
@ Pros of our definition:

» flexibility; for instance, it is easier to make alterations to CW structures (e.g.
swapping out the n-skeleton for something else without affecting any higher
skeleta).

» works for infinite complexes too

@ Strict pushout equation is very tempting but we still wish to go with our
definition. Solution: define a strictification functor (if possible)

strictify : CW — CW

s.t. X =~ strictify X but the latter type enjoys the desired strict equalities.
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Lessons learnt: encode-decode is your friend

Encode-decode works for 3° too

Lesson 4 J

o Example: needed to compute m$®(\/,, S?)

o Can use Seifert—=Van Kampen but that requires a bunch of set-up (and some
algebra)

@ Can be computed completely ‘homotopy-theoretically’ (and very directly)
using encode-decode
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Lessons learnt: encode-decode is your friend

Lesson 4 J

Encode-decode works for 3° too

o Example: needed to compute m$®(\/,, S?)

o Can use Seifert—=Van Kampen but that requires a bunch of set-up (and some
algebra)

@ Can be computed completely ‘homotopy-theoretically’ (and very directly)
using encode-decode

o To make it work for 3P instead of 1, just swap the identity type for the
following

data _=2*_(x y : A) : Type

where

[l:x=y—=x=ty

com: (pgr:x=y)—=[p-q *-rl=[r-q *-p]

and carry out the encode-decode they way you're used to.
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Formalisation

@ The formalisation is available at
https://github.com/CMU-HoTT/serre-finiteness

@ Just under 10k LOC here but this excludes most of the work on CW
complexes and many other results from the Cubical library

@ Plan: get it merged into the Cubical Agda library.

o Material on CW complexes by Loic and me: available in the library already.
See https://github.com/agda/cubical/tree/master/Cubical/CW in
particular
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https://github.com/agda/cubical/tree/master/Cubical/CW

So what about computations?

@ So now that this has been formalised, this means that we can plug any fixed
7n(S™) into Agda and compute a list of integers (ro, 1, . .. rk) s.t.

m(S™) = Z"° X Mi<i<k(Z/m,Z)

Axel Ljungstrom (University of Nottingham) Formalising SFT 37/39



So what about computations?

@ So now that this has been formalised, this means that we can plug any fixed
7n(S™) into Agda and compute a list of integers (ro, 1, . .. rk) s.t.

m(S™) = Z"° X Mi<i<k(Z/m,Z)
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m(S™) = Z"° X Mi<i<k(Z/m,Z)

@ *Insert meme with Guillaume Brunerie*

@ Haven't even been able to get the number of generators of m,(52)
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Future work: improving the result

@ Technically, we have only proved the mere existence of the list of integers and
isomorphism mentioned on the previous page

@ We can get out of the propositional truncation by proving an appropriate
uniqueness result — this needs a proof of the uniqueness of the Smith normal
form

@ Has been done before, but not in Cubical Agda. Not crucial, but would be
cool to have!
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Thanks!
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