
1/51

Is it time for a new proof assistant?

Jon Sterling

Cambridge Computer Laboratory

September 25, 2025
HoTT ElectricElectricElectricElectricElectricElectric Seminar Talks

2/51

Where we are.

There has never been a better time for proof assistants based on
dependent type theory.

+ Lean is a best-in-class proof assistant for classical mathematics,
and comes with Mathlib. Huge investment in tooling and
quality-of-life by Lean FRO.

+ Agda is a proving ground for innovative type theories (e.g.
cubical type theory), and the home of several strong libraries of
mathematics in HoTT/UF: agda-unimath, TypeTopology,
1Lab, and cubical.

+ Rocq is admittedly a little long in the tooth, but continues to be
a strong player in program verification (e.g. Iris). Notable HoTT
libraries: UniMath, Coq-HoTT, etc.

+ Some experimental systems, notably Idris 2 for Quantitative
Type Theory, Narya for Higher Observational Type Theory, and
Istari for Impredicative Computational Type Theory.

2/51

Where we are.

There has never been a better time for proof assistants based on
dependent type theory.

+ Lean is a best-in-class proof assistant for classical mathematics,
and comes with Mathlib. Huge investment in tooling and
quality-of-life by Lean FRO.

+ Agda is a proving ground for innovative type theories (e.g.
cubical type theory), and the home of several strong libraries of
mathematics in HoTT/UF: agda-unimath, TypeTopology,
1Lab, and cubical.

+ Rocq is admittedly a little long in the tooth, but continues to be
a strong player in program verification (e.g. Iris). Notable HoTT
libraries: UniMath, Coq-HoTT, etc.

+ Some experimental systems, notably Idris 2 for Quantitative
Type Theory, Narya for Higher Observational Type Theory, and
Istari for Impredicative Computational Type Theory.

2/51

Where we are.

There has never been a better time for proof assistants based on
dependent type theory.

+ Lean is a best-in-class proof assistant for classical mathematics,
and comes with Mathlib. Huge investment in tooling and
quality-of-life by Lean FRO.

+ Agda is a proving ground for innovative type theories (e.g.
cubical type theory), and the home of several strong libraries of
mathematics in HoTT/UF: agda-unimath, TypeTopology,
1Lab, and cubical.

+ Rocq is admittedly a little long in the tooth, but continues to be
a strong player in program verification (e.g. Iris). Notable HoTT
libraries: UniMath, Coq-HoTT, etc.

+ Some experimental systems, notably Idris 2 for Quantitative
Type Theory, Narya for Higher Observational Type Theory, and
Istari for Impredicative Computational Type Theory.

2/51

Where we are.

There has never been a better time for proof assistants based on
dependent type theory.

+ Lean is a best-in-class proof assistant for classical mathematics,
and comes with Mathlib. Huge investment in tooling and
quality-of-life by Lean FRO.

+ Agda is a proving ground for innovative type theories (e.g.
cubical type theory), and the home of several strong libraries of
mathematics in HoTT/UF: agda-unimath, TypeTopology,
1Lab, and cubical.

+ Rocq is admittedly a little long in the tooth, but continues to be
a strong player in program verification (e.g. Iris). Notable HoTT
libraries: UniMath, Coq-HoTT, etc.

+ Some experimental systems, notably Idris 2 for Quantitative
Type Theory, Narya for Higher Observational Type Theory, and
Istari for Impredicative Computational Type Theory.

2/51

Where we are.

There has never been a better time for proof assistants based on
dependent type theory.

+ Lean is a best-in-class proof assistant for classical mathematics,
and comes with Mathlib. Huge investment in tooling and
quality-of-life by Lean FRO.

+ Agda is a proving ground for innovative type theories (e.g.
cubical type theory), and the home of several strong libraries of
mathematics in HoTT/UF: agda-unimath, TypeTopology,
1Lab, and cubical.

+ Rocq is admittedly a little long in the tooth, but continues to be
a strong player in program verification (e.g. Iris). Notable HoTT
libraries: UniMath, Coq-HoTT, etc.

+ Some experimental systems, notably Idris 2 for Quantitative
Type Theory, Narya for Higher Observational Type Theory, and
Istari for Impredicative Computational Type Theory.

3/51

What about HoTT/UF?

Most of the current energy is invested in Agda and Rocq, split in two
communities:

1. Cubical: two mathematical libraries built in the Cubical Agda
dialect, namely the 1Lab and the cubical library.

2. “Orthodox”: some prefer to work in the dialect of the Book:
UniMath, agda-unimath, TypeTopology, Coq-HoTT.

After the initial flurry in the 2010s, we never managed to retain
interest from mainstream mathematicians, who have overwhelmingly
flocked to Lean.

4/51

The Eighteenth Brumaire of. . . formal mathematics

Looking back at the hype cycles for both HoTT and Lean, one might
conclude that the main way to attract mathematicians is through
affinity-based publicity campaigns.

+ Vladimir Voevodsky stirred up a hurricane of interest in
formalisation, in the ensuing hype, some mathematicians got
the message that HoTT/UF was the only reliable way to formalise
modern mathematics. This was not true.

+ In time for the backlash, Kevin Buzzard stirred up new interest
in formalisation via Lean—at times by attributing to Lean what
was already present in Rocq, and by making inaccurate
statements about a supposed tension between UF and classical
mathematics.

Today, ill-informed AI Hype is all the rage among the “Fields Medal
set”. Must we bend the knee?

4/51

The Eighteenth Brumaire of. . . formal mathematics

Looking back at the hype cycles for both HoTT and Lean, one might
conclude that the main way to attract mathematicians is through
affinity-based publicity campaigns.
+ Vladimir Voevodsky stirred up a hurricane of interest in

formalisation, in the ensuing hype, some mathematicians got
the message that HoTT/UF was the only reliable way to formalise
modern mathematics. This was not true.

+ In time for the backlash, Kevin Buzzard stirred up new interest
in formalisation via Lean—at times by attributing to Lean what
was already present in Rocq, and by making inaccurate
statements about a supposed tension between UF and classical
mathematics.

Today, ill-informed AI Hype is all the rage among the “Fields Medal
set”. Must we bend the knee?

4/51

The Eighteenth Brumaire of. . . formal mathematics

Looking back at the hype cycles for both HoTT and Lean, one might
conclude that the main way to attract mathematicians is through
affinity-based publicity campaigns.
+ Vladimir Voevodsky stirred up a hurricane of interest in

formalisation, in the ensuing hype, some mathematicians got
the message that HoTT/UF was the only reliable way to formalise
modern mathematics. This was not true.

+ In time for the backlash, Kevin Buzzard stirred up new interest
in formalisation via Lean—at times by attributing to Lean what
was already present in Rocq, and by making inaccurate
statements about a supposed tension between UF and classical
mathematics.

Today, ill-informed AI Hype is all the rage among the “Fields Medal
set”. Must we bend the knee?

4/51

The Eighteenth Brumaire of. . . formal mathematics

Looking back at the hype cycles for both HoTT and Lean, one might
conclude that the main way to attract mathematicians is through
affinity-based publicity campaigns.
+ Vladimir Voevodsky stirred up a hurricane of interest in

formalisation, in the ensuing hype, some mathematicians got
the message that HoTT/UF was the only reliable way to formalise
modern mathematics. This was not true.

+ In time for the backlash, Kevin Buzzard stirred up new interest
in formalisation via Lean—at times by attributing to Lean what
was already present in Rocq, and by making inaccurate
statements about a supposed tension between UF and classical
mathematics.

Today, ill-informed AI Hype is all the rage among the “Fields Medal
set”. Must we bend the knee?

5/51

Taking our lumps: why Lean is great

Hype is not the only reason mathematicians have flocked to Lean.

1. You can get Lean installed and running in less than five
seconds from VS Code, on all platforms. I am not kidding.

2. Lean has fantastic editor support out of the box, and you
don’t need to use Emacs.

3. Lean has fast and somewhat reliable type classes that let
you get to work doing normal mathematics right away without
spending hours examining trade-offs between differently
unworkable library architectures.

4. Lean has the excellent Mathlib library, which focuses
unabashedly on the canon of standard mathematics.

5. If Lean proves ⊥, that’s a bug that will be fixed. When Agda
proves ⊥, that is a feature (which we can’t remove, because some
weird Swedish code is using it!).

5/51

Taking our lumps: why Lean is great

Hype is not the only reason mathematicians have flocked to Lean.

1. You can get Lean installed and running in less than five
seconds from VS Code, on all platforms. I am not kidding.

2. Lean has fantastic editor support out of the box, and you
don’t need to use Emacs.

3. Lean has fast and somewhat reliable type classes that let
you get to work doing normal mathematics right away without
spending hours examining trade-offs between differently
unworkable library architectures.

4. Lean has the excellent Mathlib library, which focuses
unabashedly on the canon of standard mathematics.

5. If Lean proves ⊥, that’s a bug that will be fixed. When Agda
proves ⊥, that is a feature (which we can’t remove, because some
weird Swedish code is using it!).

5/51

Taking our lumps: why Lean is great

Hype is not the only reason mathematicians have flocked to Lean.

1. You can get Lean installed and running in less than five
seconds from VS Code, on all platforms. I am not kidding.

2. Lean has fantastic editor support out of the box, and you
don’t need to use Emacs.

3. Lean has fast and somewhat reliable type classes that let
you get to work doing normal mathematics right away without
spending hours examining trade-offs between differently
unworkable library architectures.

4. Lean has the excellent Mathlib library, which focuses
unabashedly on the canon of standard mathematics.

5. If Lean proves ⊥, that’s a bug that will be fixed. When Agda
proves ⊥, that is a feature (which we can’t remove, because some
weird Swedish code is using it!).

5/51

Taking our lumps: why Lean is great

Hype is not the only reason mathematicians have flocked to Lean.

1. You can get Lean installed and running in less than five
seconds from VS Code, on all platforms. I am not kidding.

2. Lean has fantastic editor support out of the box, and you
don’t need to use Emacs.

3. Lean has fast and somewhat reliable type classes that let
you get to work doing normal mathematics right away without
spending hours examining trade-offs between differently
unworkable library architectures.

4. Lean has the excellent Mathlib library, which focuses
unabashedly on the canon of standard mathematics.

5. If Lean proves ⊥, that’s a bug that will be fixed. When Agda
proves ⊥, that is a feature (which we can’t remove, because some
weird Swedish code is using it!).

5/51

Taking our lumps: why Lean is great

Hype is not the only reason mathematicians have flocked to Lean.

1. You can get Lean installed and running in less than five
seconds from VS Code, on all platforms. I am not kidding.

2. Lean has fantastic editor support out of the box, and you
don’t need to use Emacs.

3. Lean has fast and somewhat reliable type classes that let
you get to work doing normal mathematics right away without
spending hours examining trade-offs between differently
unworkable library architectures.

4. Lean has the excellent Mathlib library, which focuses
unabashedly on the canon of standard mathematics.

5. If Lean proves ⊥, that’s a bug that will be fixed. When Agda
proves ⊥, that is a feature (which we can’t remove, because some
weird Swedish code is using it!).

5/51

Taking our lumps: why Lean is great

Hype is not the only reason mathematicians have flocked to Lean.

1. You can get Lean installed and running in less than five
seconds from VS Code, on all platforms. I am not kidding.

2. Lean has fantastic editor support out of the box, and you
don’t need to use Emacs.

3. Lean has fast and somewhat reliable type classes that let
you get to work doing normal mathematics right away without
spending hours examining trade-offs between differently
unworkable library architectures.

4. Lean has the excellent Mathlib library, which focuses
unabashedly on the canon of standard mathematics.

5. If Lean proves ⊥, that’s a bug that will be fixed. When Agda
proves ⊥, that is a feature (which we can’t remove, because some
weird Swedish code is using it!).

6/51

What have we been doing in the meanwhile?

There was some truth to it when Kevin Buzzard said (paraphrased)
that a great deal of energy in the HoTT/UF community has been
focused on solving problems of logic rather than problems of
mathematics. (Example: my thesis.)

(But it’s not exclusively so! Many of us have been working on
mathematics! And both!)

I would instead say that logical and mathematical problems are part
of the same body, but that mathematics is the dog and logic is the
tail. Once in a while we should ask ourselves, who is wagging whom.

6/51

What have we been doing in the meanwhile?

There was some truth to it when Kevin Buzzard said (paraphrased)
that a great deal of energy in the HoTT/UF community has been
focused on solving problems of logic rather than problems of
mathematics. (Example: my thesis.)

(But it’s not exclusively so! Many of us have been working on
mathematics! And both!)

I would instead say that logical and mathematical problems are part
of the same body, but that mathematics is the dog and logic is the
tail. Once in a while we should ask ourselves, who is wagging whom.

7/51

10 years of cubical type theory

As a community, we solved the problem of the computational
interpretation of univalent foundations. But…

+ A computational interpretation is not necessary for doing
mathematics. In fact, we usually want to stop computation from
happening beyond a certain point; and cubical computation
leaves behind undesirable junk, like dead coercions.

+ Cubical Agda is probably? not sound for standard mathematics
because of the regrettable use of De Morgan cubes.

+ Even if we switch to a version of cubical type theory that is
sound for standard mathematics (as in redtt, cooltt, etc.),
cubical type theory has usability problems and is probably?

incompatible with reliable implicit resolution.

Cubical models more important than the cubical type theory?

7/51

10 years of cubical type theory

As a community, we solved the problem of the computational
interpretation of univalent foundations. But…

+ A computational interpretation is not necessary for doing
mathematics. In fact, we usually want to stop computation from
happening beyond a certain point; and cubical computation
leaves behind undesirable junk, like dead coercions.

+ Cubical Agda is probably? not sound for standard mathematics
because of the regrettable use of De Morgan cubes.

+ Even if we switch to a version of cubical type theory that is
sound for standard mathematics (as in redtt, cooltt, etc.),
cubical type theory has usability problems and is probably?

incompatible with reliable implicit resolution.

Cubical models more important than the cubical type theory?

7/51

10 years of cubical type theory

As a community, we solved the problem of the computational
interpretation of univalent foundations. But…

+ A computational interpretation is not necessary for doing
mathematics. In fact, we usually want to stop computation from
happening beyond a certain point; and cubical computation
leaves behind undesirable junk, like dead coercions.

+ Cubical Agda is probably? not sound for standard mathematics
because of the regrettable use of De Morgan cubes.

+ Even if we switch to a version of cubical type theory that is
sound for standard mathematics (as in redtt, cooltt, etc.),
cubical type theory has usability problems and is probably?

incompatible with reliable implicit resolution.

Cubical models more important than the cubical type theory?

7/51

10 years of cubical type theory

As a community, we solved the problem of the computational
interpretation of univalent foundations. But…

+ A computational interpretation is not necessary for doing
mathematics. In fact, we usually want to stop computation from
happening beyond a certain point; and cubical computation
leaves behind undesirable junk, like dead coercions.

+ Cubical Agda is probably? not sound for standard mathematics
because of the regrettable use of De Morgan cubes.

+ Even if we switch to a version of cubical type theory that is
sound for standard mathematics (as in redtt, cooltt, etc.),
cubical type theory has usability problems and is probably?

incompatible with reliable implicit resolution.

Cubical models more important than the cubical type theory?

7/51

10 years of cubical type theory

As a community, we solved the problem of the computational
interpretation of univalent foundations. But…

+ A computational interpretation is not necessary for doing
mathematics. In fact, we usually want to stop computation from
happening beyond a certain point; and cubical computation
leaves behind undesirable junk, like dead coercions.

+ Cubical Agda is probably? not sound for standard mathematics
because of the regrettable use of De Morgan cubes.

+ Even if we switch to a version of cubical type theory that is
sound for standard mathematics (as in redtt, cooltt, etc.),
cubical type theory has usability problems and is probably?

incompatible with reliable implicit resolution.

Cubical models more important than the cubical type theory?

8/51

15 years of UniMath: the jewel of HoTT/UF

A precious legacy.

+ 2003: Vladimir Voevodsky calls for a computerised “Bourbaki
project”—speaking of the generational transition from text to
hypertext to computer verified mathematics.

+ 2014: The UniMath project is born: a unified library of general
mathematics from the point of view of univalent foundations
in Rocq.

+ 2021: Egbert Rijke founds the agda-unimath library on similar
design principles. A big success IMO, and an on-ramp for many
students.

8/51

15 years of UniMath: the jewel of HoTT/UF

A precious legacy.

+ 2003: Vladimir Voevodsky calls for a computerised “Bourbaki
project”—speaking of the generational transition from text to
hypertext to computer verified mathematics.

+ 2014: The UniMath project is born: a unified library of general
mathematics from the point of view of univalent foundations
in Rocq.

+ 2021: Egbert Rijke founds the agda-unimath library on similar
design principles. A big success IMO, and an on-ramp for many
students.

8/51

15 years of UniMath: the jewel of HoTT/UF

A precious legacy.

+ 2003: Vladimir Voevodsky calls for a computerised “Bourbaki
project”—speaking of the generational transition from text to
hypertext to computer verified mathematics.

+ 2014: The UniMath project is born: a unified library of general
mathematics from the point of view of univalent foundations
in Rocq.

+ 2021: Egbert Rijke founds the agda-unimath library on similar
design principles. A big success IMO, and an on-ramp for many
students.

9/51

UniMath has thrived in our small community, but if there is a
computerised Bourbaki project today, it is really Lean’s MathLib.

Why hasn’t UniMath taken off outside our community? Maybe in
part because the style of formalisation is very low-level and
involves tons of plumbing.

Voevodsky chose to expose the plumbing in part because of a
perception that the high-level features of Rocq and Agda are
of. . . questionable semantic validity and portability.

Thesis: A full solution to the underlying problems noted by Voevodsky
must factor through a return to foundational orthodoxy, but we
need not sacrifice usability.

9/51

UniMath has thrived in our small community, but if there is a
computerised Bourbaki project today, it is really Lean’s MathLib.

Why hasn’t UniMath taken off outside our community? Maybe in
part because the style of formalisation is very low-level and
involves tons of plumbing.

Voevodsky chose to expose the plumbing in part because of a
perception that the high-level features of Rocq and Agda are
of. . . questionable semantic validity and portability.

Thesis: A full solution to the underlying problems noted by Voevodsky
must factor through a return to foundational orthodoxy, but we
need not sacrifice usability.

9/51

UniMath has thrived in our small community, but if there is a
computerised Bourbaki project today, it is really Lean’s MathLib.

Why hasn’t UniMath taken off outside our community? Maybe in
part because the style of formalisation is very low-level and
involves tons of plumbing.

Voevodsky chose to expose the plumbing in part because of a
perception that the high-level features of Rocq and Agda are
of. . . questionable semantic validity and portability.

Thesis: A full solution to the underlying problems noted by Voevodsky
must factor through a return to foundational orthodoxy, but we
need not sacrifice usability.

9/51

UniMath has thrived in our small community, but if there is a
computerised Bourbaki project today, it is really Lean’s MathLib.

Why hasn’t UniMath taken off outside our community? Maybe in
part because the style of formalisation is very low-level and
involves tons of plumbing.

Voevodsky chose to expose the plumbing in part because of a
perception that the high-level features of Rocq and Agda are
of. . . questionable semantic validity and portability.

Thesis: A full solution to the underlying problems noted by Voevodsky
must factor through a return to foundational orthodoxy, but we
need not sacrifice usability.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof.

But I want:

+ …to stop wearing the hair shirt.
⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.
⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.
⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof. But I want:

+ …to stop wearing the hair shirt.

⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.
⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.
⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof. But I want:

+ …to stop wearing the hair shirt.
⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.
⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.
⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof. But I want:

+ …to stop wearing the hair shirt.
⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.

⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.
⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof. But I want:

+ …to stop wearing the hair shirt.
⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.
⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.
⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof. But I want:

+ …to stop wearing the hair shirt.
⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.
⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.

⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof. But I want:

+ …to stop wearing the hair shirt.
⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.
⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.
⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

10/51

A thought experiment

I still believe in HoTT/UF and computer-assisted proof. But I want:

+ …to stop wearing the hair shirt.
⇒ I need reliable and flexible tools for algebraic hierarchies. I
need reliable control over definitional unfolding and the display
of abstractions.

+ …to use it to teach undergraduates.
⇒ I need easy installation, great editor support, and to minimise
“type theoretic” artefacts that distract from the mathematics;
goal-driven development; documentary “history” of deductions.

+ …to use it to communicate with “normal” mathematicians.
⇒ I need the thing to be clearly sound for standard
mathematics.

All of this suggests to me that the best path forward for my needs is
a supercharged implementation of Book HoTT. Let’s innovate on
the tool, not on the core theory which is already great.

11/51

Why not Higher Observational Type Theory?

I think Higher OTT is very promising and it could be an
improvement over cubical type theory in many respects once it is
finished. But I think it is not what I am looking for.

+ I now believe that the definitional β-law for path induction (i.e.
regularity) is extremely important.

+ Higher OTT provides nearly definitional structure identity
principles, but the automatic ones are not the ones that you
expect from standard mathematics. So I think you might still
want to characterise path spaces.

+ Very simple until you realise you need symmetries, after which
point I feel we run into usability problems similar to cubical.

+ I need something that I know how to implement efficiently (with
complete higher order pattern unification, etc.) today.

I am very open to revisiting these points in the future.

11/51

Why not Higher Observational Type Theory?

I think Higher OTT is very promising and it could be an
improvement over cubical type theory in many respects once it is
finished. But I think it is not what I am looking for.

+ I now believe that the definitional β-law for path induction (i.e.
regularity) is extremely important.

+ Higher OTT provides nearly definitional structure identity
principles, but the automatic ones are not the ones that you
expect from standard mathematics. So I think you might still
want to characterise path spaces.

+ Very simple until you realise you need symmetries, after which
point I feel we run into usability problems similar to cubical.

+ I need something that I know how to implement efficiently (with
complete higher order pattern unification, etc.) today.

I am very open to revisiting these points in the future.

11/51

Why not Higher Observational Type Theory?

I think Higher OTT is very promising and it could be an
improvement over cubical type theory in many respects once it is
finished. But I think it is not what I am looking for.

+ I now believe that the definitional β-law for path induction (i.e.
regularity) is extremely important.

+ Higher OTT provides nearly definitional structure identity
principles, but the automatic ones are not the ones that you
expect from standard mathematics. So I think you might still
want to characterise path spaces.

+ Very simple until you realise you need symmetries, after which
point I feel we run into usability problems similar to cubical.

+ I need something that I know how to implement efficiently (with
complete higher order pattern unification, etc.) today.

I am very open to revisiting these points in the future.

11/51

Why not Higher Observational Type Theory?

I think Higher OTT is very promising and it could be an
improvement over cubical type theory in many respects once it is
finished. But I think it is not what I am looking for.

+ I now believe that the definitional β-law for path induction (i.e.
regularity) is extremely important.

+ Higher OTT provides nearly definitional structure identity
principles, but the automatic ones are not the ones that you
expect from standard mathematics. So I think you might still
want to characterise path spaces.

+ Very simple until you realise you need symmetries, after which
point I feel we run into usability problems similar to cubical.

+ I need something that I know how to implement efficiently (with
complete higher order pattern unification, etc.) today.

I am very open to revisiting these points in the future.

11/51

Why not Higher Observational Type Theory?

I think Higher OTT is very promising and it could be an
improvement over cubical type theory in many respects once it is
finished. But I think it is not what I am looking for.

+ I now believe that the definitional β-law for path induction (i.e.
regularity) is extremely important.

+ Higher OTT provides nearly definitional structure identity
principles, but the automatic ones are not the ones that you
expect from standard mathematics. So I think you might still
want to characterise path spaces.

+ Very simple until you realise you need symmetries, after which
point I feel we run into usability problems similar to cubical.

+ I need something that I know how to implement efficiently (with
complete higher order pattern unification, etc.) today.

I am very open to revisiting these points in the future.

11/51

Why not Higher Observational Type Theory?

I think Higher OTT is very promising and it could be an
improvement over cubical type theory in many respects once it is
finished. But I think it is not what I am looking for.

+ I now believe that the definitional β-law for path induction (i.e.
regularity) is extremely important.

+ Higher OTT provides nearly definitional structure identity
principles, but the automatic ones are not the ones that you
expect from standard mathematics. So I think you might still
want to characterise path spaces.

+ Very simple until you realise you need symmetries, after which
point I feel we run into usability problems similar to cubical.

+ I need something that I know how to implement efficiently (with
complete higher order pattern unification, etc.) today.

I am very open to revisiting these points in the future.

11/51

Why not Higher Observational Type Theory?

I think Higher OTT is very promising and it could be an
improvement over cubical type theory in many respects once it is
finished. But I think it is not what I am looking for.

+ I now believe that the definitional β-law for path induction (i.e.
regularity) is extremely important.

+ Higher OTT provides nearly definitional structure identity
principles, but the automatic ones are not the ones that you
expect from standard mathematics. So I think you might still
want to characterise path spaces.

+ Very simple until you realise you need symmetries, after which
point I feel we run into usability problems similar to cubical.

+ I need something that I know how to implement efficiently (with
complete higher order pattern unification, etc.) today.

I am very open to revisiting these points in the future.

Some proposals for a
future proof assistant

“PROJECT PTERODACTYL”

Some proposals for a
future proof assistant

“PROJECT PTERODACTYL”

(because we always have to
have a bird name)

13/51

I want a proof assistant that is. . .

+ delightful for students and pros alike,

+ predictable for the educated user,

+ efficiently implementable,

+ orthodox in its foundational assumptions,

+ and compatible with HoTT/UF from the start.

It should be equally usable for constructive and classical mathematics.

Major constraint: Interpretable in a conservative extension of Book
HoTT. The image may enjoy more definitional equalities than are
derivable in the source language.

Opportunity: to use what we know to make a system that is even
more predictable and delightful than Lean today, and supports
HoTT/UF natively. May our rising tide float all boats!

13/51

I want a proof assistant that is. . .

+ delightful for students and pros alike,

+ predictable for the educated user,

+ efficiently implementable,

+ orthodox in its foundational assumptions,

+ and compatible with HoTT/UF from the start.

It should be equally usable for constructive and classical mathematics.

Major constraint: Interpretable in a conservative extension of Book
HoTT. The image may enjoy more definitional equalities than are
derivable in the source language.

Opportunity: to use what we know to make a system that is even
more predictable and delightful than Lean today, and supports
HoTT/UF natively. May our rising tide float all boats!

13/51

I want a proof assistant that is. . .

+ delightful for students and pros alike,

+ predictable for the educated user,

+ efficiently implementable,

+ orthodox in its foundational assumptions,

+ and compatible with HoTT/UF from the start.

It should be equally usable for constructive and classical mathematics.

Major constraint: Interpretable in a conservative extension of Book
HoTT. The image may enjoy more definitional equalities than are
derivable in the source language.

Opportunity: to use what we know to make a system that is even
more predictable and delightful than Lean today, and supports
HoTT/UF natively. May our rising tide float all boats!

14/51

Dealing with algebraic hierarchies.

15/51

The trouble with type classes. . .

Many systems support some variation on “type classes”, but I think
they aren’t conducive to the reliable and predictable organisation of
concepts. One issue is what I call the amnesia problem:

def myTheorem {G : Type} [Group G] : . . .G . . .

Above, wherever G appears after the colon, we know only G : Type; if
we want to use some of the group operations, we need to consult our
type class database to find a way to coerce G to a group.

Easy in this case, but in general relies on higher-order unification—for
which there do exist well-delineated fragments with complete (i.e.
reliable) algorithms, but these are implemented by no existing proof
assistants at all (I am not kidding).

15/51

The trouble with type classes. . .

Many systems support some variation on “type classes”, but I think
they aren’t conducive to the reliable and predictable organisation of
concepts. One issue is what I call the amnesia problem:

def myTheorem {G : Type} [Group G] : . . .G . . .

Above, wherever G appears after the colon, we know only G : Type; if
we want to use some of the group operations, we need to consult our
type class database to find a way to coerce G to a group.

Easy in this case, but in general relies on higher-order unification—for
which there do exist well-delineated fragments with complete (i.e.
reliable) algorithms, but these are implemented by no existing proof
assistants at all (I am not kidding).

16/51

What about bundling?

Why did we not just start with an actual group G : Group and then
automatically coerce it to its carrier?

In real mathematics, we say
Let G be a group,

not
Let G be a set, which by the way happens to be the carrier of
some group.

That’s called bundling, and this is indeed how the Rocq/mathcomp
library is organised.

16/51

What about bundling?

Why did we not just start with an actual group G : Group and then
automatically coerce it to its carrier?

In real mathematics, we say
Let G be a group,

not
Let G be a set, which by the way happens to be the carrier of
some group.

That’s called bundling, and this is indeed how the Rocq/mathcomp
library is organised.

17/51

Challenges posed by bundling

1. Need to unbundle to talk about shared components.

2. Rocq/mathcomp still wants to hang the identity of structures
on their carrier sets. (Unification Hell!)

mathcomp walks the narrow path of a verbose and fragile pattern,
which is beginning to be automated via Hierarchy Builder.

Sometimes get challenging error messages that can only be
interpreted by someone who has implemented Rocq’s unifier.

Shows great promise for Rocq, but I will choose a different design.

18/51

Shall we return to first principles? Some theses.

1. In everyday mathematics, we use a mixture of bundled and
unbundled representations—and we pass between them
seamlessly. Wemust support this directly!

2. It is of questionable value to deduce algebraic operations (×)
from type identity (N) via unification because any given type
does carry distinct but equally important instances of the same
structure. We should not waste our time trying to do this!

3. Isabelle deals with all these issues very elegantly and simply,
through its locale mechanism. We should adapt aspects of
Isabelle’s locales to dependent type theory.

18/51

Shall we return to first principles? Some theses.

1. In everyday mathematics, we use a mixture of bundled and
unbundled representations—and we pass between them
seamlessly. Wemust support this directly!

2. It is of questionable value to deduce algebraic operations (×)
from type identity (N) via unification because any given type
does carry distinct but equally important instances of the same
structure. We should not waste our time trying to do this!

3. Isabelle deals with all these issues very elegantly and simply,
through its locale mechanism. We should adapt aspects of
Isabelle’s locales to dependent type theory.

18/51

Shall we return to first principles? Some theses.

1. In everyday mathematics, we use a mixture of bundled and
unbundled representations—and we pass between them
seamlessly. Wemust support this directly!

2. It is of questionable value to deduce algebraic operations (×)
from type identity (N) via unification because any given type
does carry distinct but equally important instances of the same
structure. We should not waste our time trying to do this!

3. Isabelle deals with all these issues very elegantly and simply,
through its locale mechanism. We should adapt aspects of
Isabelle’s locales to dependent type theory.

18/51

Shall we return to first principles? Some theses.

1. In everyday mathematics, we use a mixture of bundled and
unbundled representations—and we pass between them
seamlessly. Wemust support this directly!

2. It is of questionable value to deduce algebraic operations (×)
from type identity (N) via unification because any given type
does carry distinct but equally important instances of the same
structure. We should not waste our time trying to do this!

3. Isabelle deals with all these issues very elegantly and simply,
through its locale mechanism. We should adapt aspects of
Isabelle’s locales to dependent type theory.

19/51

I always found that if you want to make a new programming tool,
you need to write the “dream code” first.

“Dream code” is code that (1) you want to be able to write in the final
system, and (2) you basically know how to write an elaborator/compiler for.

Here is some of my dream code.

20/51

Named telescopes for theory signatures

At first, these are very much like record/structure types in Lean.

theory Semigroup where
car : Set
mul : car → car → car
assoc : (x, y, z : car) → mul (mul x y) z = mul x (mul y z)

theory Monoid where
include Semigroup
one : car
leftUnit : (x : car) → mul one x = x
rightUnit : (x : car) → mul x one = x

21/51

Partial instantiation of named telescopes

From ML modules and Arend’s records we take seamless
transition between parameterised and bundled structures via
convenient partial instantiation.

abbreviation NatMonoid ≡ Monoid / {car ⇒ N}
// The result is actually a small type! Semantically this is just a

substitution of a suffix of the telescope.

It is easy to talk about two monoids with the same carrier set.

theory EckmannHilton where
X : Set
M, N : Monoid / {car ⇒ X}
dist : (u, v,w, x : X) → M.mul (N.mul u v) (N.mul w x) =

N.mul (M.mul u w) (M.mul v x)

22/51

Named telescopes are extensible

Unlike ML modules and like Agda and Lean’s records, the name
of a telescope matters.

From Isabelle’s locales we take the ability to
retroactively graft definitional extensions onto existing theories.

extension Semigroup where
square : car → car
square x ⇒ mul x x

The square function is henceforth available on not only any
Semigroup, but also any Monoid, or any NatMonoid, etc.

extension EckmannHilton where
result : M = N
result ⇒ // . . . proof of Eckmann–Hilton theorem!

Idea: set up a theory whose fields are the assumptions of a
complicated result, and extend it by the result.

22/51

Named telescopes are extensible

Unlike ML modules and like Agda and Lean’s records, the name
of a telescope matters. From Isabelle’s locales we take the ability to
retroactively graft definitional extensions onto existing theories.

extension Semigroup where
square : car → car
square x ⇒ mul x x

The square function is henceforth available on not only any
Semigroup, but also any Monoid, or any NatMonoid, etc.

extension EckmannHilton where
result : M = N
result ⇒ // . . . proof of Eckmann–Hilton theorem!

Idea: set up a theory whose fields are the assumptions of a
complicated result, and extend it by the result.

22/51

Named telescopes are extensible

Unlike ML modules and like Agda and Lean’s records, the name
of a telescope matters. From Isabelle’s locales we take the ability to
retroactively graft definitional extensions onto existing theories.

extension Semigroup where
square : car → car
square x ⇒ mul x x

The square function is henceforth available on not only any
Semigroup, but also any Monoid, or any NatMonoid, etc.

extension EckmannHilton where
result : M = N
result ⇒ // . . . proof of Eckmann–Hilton theorem!

Idea: set up a theory whose fields are the assumptions of a
complicated result, and extend it by the result.

22/51

Named telescopes are extensible

Unlike ML modules and like Agda and Lean’s records, the name
of a telescope matters. From Isabelle’s locales we take the ability to
retroactively graft definitional extensions onto existing theories.

extension Semigroup where
square : car → car
square x ⇒ mul x x

The square function is henceforth available on not only any
Semigroup, but also any Monoid, or any NatMonoid, etc.

extension EckmannHilton where
result : M = N
result ⇒ // . . . proof of Eckmann–Hilton theorem!

Idea: set up a theory whose fields are the assumptions of a
complicated result, and extend it by the result.

23/51

Compared with type classes

Extensible named telescopes, which combine aspects of ML
modules and Isabelle’s locales, are a lightweight alternative to type
classes (without covering all the latter’s features).

Extensible named telescopes do their heavy lifting without
resorting to higher-order unification; this makes them both
highly efficient and predictable.

No free lunch: unification still crucial, but it need not steer the ship.

Diamond problems are easily resolved, both in the sense of resolution
blowup and in the far more important sense of coherence. (Lean’s
diamond resolution is fast but incoherent and unspecified.)

Even cycles are fine. (Isabelle shows the way!)

23/51

Compared with type classes

Extensible named telescopes, which combine aspects of ML
modules and Isabelle’s locales, are a lightweight alternative to type
classes (without covering all the latter’s features).

Extensible named telescopes do their heavy lifting without
resorting to higher-order unification; this makes them both
highly efficient and predictable.

No free lunch: unification still crucial, but it need not steer the ship.

Diamond problems are easily resolved, both in the sense of resolution
blowup and in the far more important sense of coherence. (Lean’s
diamond resolution is fast but incoherent and unspecified.)

Even cycles are fine. (Isabelle shows the way!)

23/51

Compared with type classes

Extensible named telescopes, which combine aspects of ML
modules and Isabelle’s locales, are a lightweight alternative to type
classes (without covering all the latter’s features).

Extensible named telescopes do their heavy lifting without
resorting to higher-order unification; this makes them both
highly efficient and predictable.

No free lunch: unification still crucial, but it need not steer the ship.

Diamond problems are easily resolved, both in the sense of resolution
blowup and in the far more important sense of coherence. (Lean’s
diamond resolution is fast but incoherent and unspecified.)

Even cycles are fine. (Isabelle shows the way!)

24/51

Dealing with inductive types and eliminators.

25/51

How shall we deal with inductive types?

Several theses.

1. I propose to follow Epigram in providing pattern notation to
anything that looks like an eliminator. Can be adapted to
HoTT after Cockx, Devriese, and Piessens.

2. My goal in eliminating pattern matching is not only trust:
non-built-in eliminators deserve good notation too.

3. There is no need for fancy termination checkers; even
Agda’s non-fancy termination checker has been a fount of
inconsistency. Mouse + Cookie problem.

4. (Higher) inductive type declarations can be elaborated to
signatures from which eliminators can be synthesised à la
Kaposi–Kovacs.

5. Usability: the user should not see the unravelled signatatures
nor eliminators, ever(∗). This will work even in the case of
user-supplied eliminators.

25/51

How shall we deal with inductive types?

Several theses.
1. I propose to follow Epigram in providing pattern notation to

anything that looks like an eliminator. Can be adapted to
HoTT after Cockx, Devriese, and Piessens.

2. My goal in eliminating pattern matching is not only trust:
non-built-in eliminators deserve good notation too.

3. There is no need for fancy termination checkers; even
Agda’s non-fancy termination checker has been a fount of
inconsistency. Mouse + Cookie problem.

4. (Higher) inductive type declarations can be elaborated to
signatures from which eliminators can be synthesised à la
Kaposi–Kovacs.

5. Usability: the user should not see the unravelled signatatures
nor eliminators, ever(∗). This will work even in the case of
user-supplied eliminators.

25/51

How shall we deal with inductive types?

Several theses.
1. I propose to follow Epigram in providing pattern notation to

anything that looks like an eliminator. Can be adapted to
HoTT after Cockx, Devriese, and Piessens.

2. My goal in eliminating pattern matching is not only trust:
non-built-in eliminators deserve good notation too.

3. There is no need for fancy termination checkers; even
Agda’s non-fancy termination checker has been a fount of
inconsistency. Mouse + Cookie problem.

4. (Higher) inductive type declarations can be elaborated to
signatures from which eliminators can be synthesised à la
Kaposi–Kovacs.

5. Usability: the user should not see the unravelled signatatures
nor eliminators, ever(∗). This will work even in the case of
user-supplied eliminators.

25/51

How shall we deal with inductive types?

Several theses.
1. I propose to follow Epigram in providing pattern notation to

anything that looks like an eliminator. Can be adapted to
HoTT after Cockx, Devriese, and Piessens.

2. My goal in eliminating pattern matching is not only trust:
non-built-in eliminators deserve good notation too.

3. There is no need for fancy termination checkers; even
Agda’s non-fancy termination checker has been a fount of
inconsistency. Mouse + Cookie problem.

4. (Higher) inductive type declarations can be elaborated to
signatures from which eliminators can be synthesised à la
Kaposi–Kovacs.

5. Usability: the user should not see the unravelled signatatures
nor eliminators, ever(∗). This will work even in the case of
user-supplied eliminators.

25/51

How shall we deal with inductive types?

Several theses.
1. I propose to follow Epigram in providing pattern notation to

anything that looks like an eliminator. Can be adapted to
HoTT after Cockx, Devriese, and Piessens.

2. My goal in eliminating pattern matching is not only trust:
non-built-in eliminators deserve good notation too.

3. There is no need for fancy termination checkers; even
Agda’s non-fancy termination checker has been a fount of
inconsistency. Mouse + Cookie problem.

4. (Higher) inductive type declarations can be elaborated to
signatures from which eliminators can be synthesised à la
Kaposi–Kovacs.

5. Usability: the user should not see the unravelled signatatures
nor eliminators, ever(∗). This will work even in the case of
user-supplied eliminators.

25/51

How shall we deal with inductive types?

Several theses.
1. I propose to follow Epigram in providing pattern notation to

anything that looks like an eliminator. Can be adapted to
HoTT after Cockx, Devriese, and Piessens.

2. My goal in eliminating pattern matching is not only trust:
non-built-in eliminators deserve good notation too.

3. There is no need for fancy termination checkers; even
Agda’s non-fancy termination checker has been a fount of
inconsistency. Mouse + Cookie problem.

4. (Higher) inductive type declarations can be elaborated to
signatures from which eliminators can be synthesised à la
Kaposi–Kovacs.

5. Usability: the user should not see the unravelled signatatures
nor eliminators, ever(∗). This will work even in the case of
user-supplied eliminators.

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.

Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.

Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.

Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.

Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

26/51

Why haven’t we been doing for the twenty years?

Basing a proof assistant on eliminators is widely believed to have
some drawbacks.

1. Writeability: Eliminators are difficult to program directly with.
Fact Check: Conor McBride solved this in their 1999 PhD thesis, inspiring modern
systems like Lean to compile pattern matching to eliminators.

2. Readability: If the kernel uses eliminators, they are going to show up in goals, which
makes things impossible to read.
Fact Check: See McBride and McKinna, The View From The Left. This is a solved
problem, using McBride’s “labelled types” trick!

3. Efficiency: Code written with eliminators is less efficient than general recursive
algorithms.
Fact Check: See Brady, Practical Implementation of a Dependently Typed Functional
Programming Language (§ 6.1.3). Sometimes true sometimes not, but Brady shows how
to recover the intended general recursive algorithm if we need it using labelled types.

4. Expressivity: It might be very difficult to interpret reasonable but subtle total recursive
programs.
Fact Check: Those patterns are not reasonable, and we shouldn’t support them. (See the
last 900 soundness bugs in Agda.) Nonetheless, we can arrange to compile our eliminator
code to any subtle general-recursive program we want (using labelled types, again).

27/51

Current art in the elimination of patterns

+ Lean compiles recursive pattern-matching programs to
eliminators. Support for dependent pattern matching is a bit
limited. Works very well and constantly improving.

+ Rocq has the Equations package by Sozeau, which implements
more of McBride and McKinna’s vision than Lean, but a little
rough around the edges.

+ Both Lean and Rocq/Equations use accessibility predicates in
their elaboration of structural recursion.

– Lean’s accessibility predicates are proof irrelevant, which
destroys subject reduction. Oops!

– (I’ll say more about this.)

27/51

Current art in the elimination of patterns

+ Lean compiles recursive pattern-matching programs to
eliminators. Support for dependent pattern matching is a bit
limited. Works very well and constantly improving.

+ Rocq has the Equations package by Sozeau, which implements
more of McBride and McKinna’s vision than Lean, but a little
rough around the edges.

+ Both Lean and Rocq/Equations use accessibility predicates in
their elaboration of structural recursion.

– Lean’s accessibility predicates are proof irrelevant, which
destroys subject reduction. Oops!

– (I’ll say more about this.)

27/51

Current art in the elimination of patterns

+ Lean compiles recursive pattern-matching programs to
eliminators. Support for dependent pattern matching is a bit
limited. Works very well and constantly improving.

+ Rocq has the Equations package by Sozeau, which implements
more of McBride and McKinna’s vision than Lean, but a little
rough around the edges.

+ Both Lean and Rocq/Equations use accessibility predicates in
their elaboration of structural recursion.

– Lean’s accessibility predicates are proof irrelevant, which
destroys subject reduction. Oops!

– (I’ll say more about this.)

28/51

A few lessons our community never learned…

In their PhD (1999), Conor McBride sought to elaborate dependent
pattern matching to a data type’s standard eliminator, leading to
Epigram. Basis for Lean’s and Rocq/Equations’ pattern matching.
Along the way, a few lessons of Epigram were missed.

1. Epigram’s pattern matching notation applies to anything that is
shaped like an eliminator. HoTT/UF applications abound.

2. Epigram did not force accessibility witnesses: instead, used
“memo structures” inspired by Giménez. More to say.

28/51

A few lessons our community never learned…

In their PhD (1999), Conor McBride sought to elaborate dependent
pattern matching to a data type’s standard eliminator, leading to
Epigram. Basis for Lean’s and Rocq/Equations’ pattern matching.
Along the way, a few lessons of Epigram were missed.

1. Epigram’s pattern matching notation applies to anything that is
shaped like an eliminator. HoTT/UF applications abound.

2. Epigram did not force accessibility witnesses: instead, used
“memo structures” inspired by Giménez. More to say.

28/51

A few lessons our community never learned…

In their PhD (1999), Conor McBride sought to elaborate dependent
pattern matching to a data type’s standard eliminator, leading to
Epigram. Basis for Lean’s and Rocq/Equations’ pattern matching.
Along the way, a few lessons of Epigram were missed.

1. Epigram’s pattern matching notation applies to anything that is
shaped like an eliminator. HoTT/UF applications abound.

2. Epigram did not force accessibility witnesses: instead, used
“memo structures” inspired by Giménez. More to say.

29/51

It it looks like and quacks like an eliminator…

Conor McBride gave the following example:

Given

vproj : Vec X n → Fin n → X

how would you define the following?

vproj? : Vec X n → N → Maybe X

We could first project the vector to a list, but that is inefficient.
Instead we want to check the bound, but we need to do this in a very
dependently typed way.

29/51

It it looks like and quacks like an eliminator…

Conor McBride gave the following example:

Given

vproj : Vec X n → Fin n → X

how would you define the following?

vproj? : Vec X n → N → Maybe X

We could first project the vector to a list, but that is inefficient.
Instead we want to check the bound, but we need to do this in a very
dependently typed way.

30/51

Conor proposes to use a derived eliminator that justifies the case split
that we want to perform in general:

π : Fin n → N

checkBound
: (P : N → N → Type)
→ ((n : N) (i : Fin n) → P n (πi))
→ ((n, r : N) → P n (n+ r))
→ (n,m : N) → P n m

// prove this later

31/51

Now we can do dependent pattern matching, but using checkBound
instead of the standard eliminator.

Here’s roughly how it looked in
Epigram:

vproj?n (⃗x : Vec X n) (m : N) → Maybe X
vproj?n x⃗ m

31/51

Now we can do dependent pattern matching, but using checkBound
instead of the standard eliminator. Here’s roughly how it looked in
Epigram:

vproj?n (⃗x : Vec X n) (m : N) → Maybe X
vproj?n x⃗ m

31/51

Now we can do dependent pattern matching, but using checkBound
instead of the standard eliminator. Here’s roughly how it looked in
Epigram:

vproj?n (⃗x : Vec X n) (m : N) → Maybe X
vproj?n x⃗ m ⇐ checkBound n m
vproj?n x⃗ (π i)
vproj?n x⃗ (n+m)

31/51

Now we can do dependent pattern matching, but using checkBound
instead of the standard eliminator. Here’s roughly how it looked in
Epigram:

vproj?n (⃗x : Vec X n) (m : N) → Maybe X
vproj?n x⃗ m ⇐ checkBound n m
vproj?n x⃗ (π i) ⇒ some (vproj x⃗ i)
vproj?n x⃗ (n+m)

31/51

Now we can do dependent pattern matching, but using checkBound
instead of the standard eliminator. Here’s roughly how it looked in
Epigram:

vproj?n (⃗x : Vec X n) (m : N) → Maybe X
vproj?n x⃗ m ⇐ checkBound n m
vproj?n x⃗ (π i) ⇒ some (vproj x⃗ i)
vproj?n x⃗ (n+m) ⇒ none ■

31/51

Now we can do dependent pattern matching, but using checkBound
instead of the standard eliminator. Here’s roughly how it looked in
Epigram:

vproj?n (⃗x : Vec X n) (m : N) → Maybe X
vproj?n x⃗ m ⇐ checkBound n m
vproj?n x⃗ (π i) ⇒ some (vproj x⃗ i)
vproj?n x⃗ (n+m) ⇒ none ■

We can simulate this in Agda using several more indirections,
where-clauses, etc.. But (1) directness is good, and (2) the recipe of
McBride and McKinna gives better control over the display of goals.

32/51

Derived eliminators are useful for HoTT/UF!

Consider the set-quotient [−] : A↠ A/R. We have the standard
eliminator:

elimA/R

: (B : A/R → Set)
→ (f : (x : A) → B [x])
→ (x, y : A) (r : R x y) → fx =B

glue r fy
→ (x : A/R) → B x

But we can also derive an eliminator for proposition-valued motives!

elimPropA/R

: (B : A/R → Prop)
→ (f : (x : A) → B [x])
→ (u : A/R) → B u

32/51

Derived eliminators are useful for HoTT/UF!

Consider the set-quotient [−] : A↠ A/R. We have the standard
eliminator:

elimA/R

: (B : A/R → Set)
→ (f : (x : A) → B [x])
→ (x, y : A) (r : R x y) → fx =B

glue r fy
→ (x : A/R) → B x

But we can also derive an eliminator for proposition-valued motives!

elimPropA/R

: (B : A/R → Prop)
→ (f : (x : A) → B [x])
→ (u : A/R) → B u

33/51

This would allow us to give the following very elegant proof that the
quotient map is a surjection:

quotientMapIsSurj (u : A/R) : ∃x : A. u = [x]
quotientMapIsSurj u

⇐ elimPropA/R u
quotientMapIsSurj [x] ⇒ |(x, refl)|−1 ■

Unfolding behaviour is extremely good: the user never sees

elimPropA/R u (λx. |(x, refl)|−1)

in a goal, but nonetheless the unfolding

quotientMapIsSurj [x]⇝ |(x, refl)|−1

does fire. This is automatic and works for anything shaped like
an eliminator. Thanks, Conor!

33/51

This would allow us to give the following very elegant proof that the
quotient map is a surjection:

quotientMapIsSurj (u : A/R) : ∃x : A. u = [x]
quotientMapIsSurj u ⇐ elimPropA/R u
quotientMapIsSurj [x]

⇒ |(x, refl)|−1 ■

Unfolding behaviour is extremely good: the user never sees

elimPropA/R u (λx. |(x, refl)|−1)

in a goal, but nonetheless the unfolding

quotientMapIsSurj [x]⇝ |(x, refl)|−1

does fire. This is automatic and works for anything shaped like
an eliminator. Thanks, Conor!

33/51

This would allow us to give the following very elegant proof that the
quotient map is a surjection:

quotientMapIsSurj (u : A/R) : ∃x : A. u = [x]
quotientMapIsSurj u ⇐ elimPropA/R u
quotientMapIsSurj [x] ⇒ |(x, refl)|−1 ■

Unfolding behaviour is extremely good: the user never sees

elimPropA/R u (λx. |(x, refl)|−1)

in a goal, but nonetheless the unfolding

quotientMapIsSurj [x]⇝ |(x, refl)|−1

does fire. This is automatic and works for anything shaped like
an eliminator. Thanks, Conor!

33/51

This would allow us to give the following very elegant proof that the
quotient map is a surjection:

quotientMapIsSurj (u : A/R) : ∃x : A. u = [x]
quotientMapIsSurj u ⇐ elimPropA/R u
quotientMapIsSurj [x] ⇒ |(x, refl)|−1 ■

Unfolding behaviour is extremely good: the user never sees

elimPropA/R u (λx. |(x, refl)|−1)

in a goal, but nonetheless the unfolding

quotientMapIsSurj [x]⇝ |(x, refl)|−1

does fire.

This is automatic and works for anything shaped like
an eliminator. Thanks, Conor!

33/51

This would allow us to give the following very elegant proof that the
quotient map is a surjection:

quotientMapIsSurj (u : A/R) : ∃x : A. u = [x]
quotientMapIsSurj u ⇐ elimPropA/R u
quotientMapIsSurj [x] ⇒ |(x, refl)|−1 ■

Unfolding behaviour is extremely good: the user never sees

elimPropA/R u (λx. |(x, refl)|−1)

in a goal, but nonetheless the unfolding

quotientMapIsSurj [x]⇝ |(x, refl)|−1

does fire. This is automatic and works for anything shaped like
an eliminator. Thanks, Conor!

34/51

Two derived eliminators for HoTT/UF

Both function extensionality and the univalence axiom can be
rephrased as induction principles.

1. Function extensionality = “induction on homotopies”

2. Univalence = “induction on equivalences”

More generally for any univalent reflexive graph we obtain a derived
eliminator (see “fundamental theorem of identity types”).

35/51

cor2.4.4f : A→A (H : f ∼ 1A) : H ◦ f ∼ apf ◦ H
cor2.4.4f H p x

⇐ htpyInduction (f ,H)
cor2.4.41A (λx. reflx) ⇒ λx. reflreflx ■

35/51

cor2.4.4f : A→A (H : f ∼ 1A) : H ◦ f ∼ apf ◦ H
cor2.4.4f H p x ⇐ htpyInduction (f ,H)
cor2.4.41A (λx. reflx)

⇒ λx. reflreflx ■

35/51

cor2.4.4f : A→A (H : f ∼ 1A) : H ◦ f ∼ apf ◦ H
cor2.4.4f H p x ⇐ htpyInduction (f ,H)
cor2.4.41A (λx. reflx) ⇒ λx. reflreflx ■

36/51

equivCompAssocA,B,C,D (f : A ∼= B) (g : B ∼= C) (h : C ∼= D)
: h ◦ (g ◦ f) =A∼=C (h ◦ g) ◦ f

equivCompAssocA,B,C,D f g h

⇐ equivInduction f
equivCompAssocA,A,C,D 1A g h ⇐ equivInduction g
equivCompAssocB,B,B,D 1A 1A h ⇐ equivInduction h
equivCompAssocB,B,B,1A 1A 1A 1A ⇒ refl ■

36/51

equivCompAssocA,B,C,D (f : A ∼= B) (g : B ∼= C) (h : C ∼= D)
: h ◦ (g ◦ f) =A∼=C (h ◦ g) ◦ f

equivCompAssocA,B,C,D f g h ⇐ equivInduction f
equivCompAssocA,A,C,D 1A g h

⇐ equivInduction g
equivCompAssocB,B,B,D 1A 1A h ⇐ equivInduction h
equivCompAssocB,B,B,1A 1A 1A 1A ⇒ refl ■

36/51

equivCompAssocA,B,C,D (f : A ∼= B) (g : B ∼= C) (h : C ∼= D)
: h ◦ (g ◦ f) =A∼=C (h ◦ g) ◦ f

equivCompAssocA,B,C,D f g h ⇐ equivInduction f
equivCompAssocA,A,C,D 1A g h ⇐ equivInduction g
equivCompAssocB,B,B,D 1A 1A h

⇐ equivInduction h
equivCompAssocB,B,B,1A 1A 1A 1A ⇒ refl ■

36/51

equivCompAssocA,B,C,D (f : A ∼= B) (g : B ∼= C) (h : C ∼= D)
: h ◦ (g ◦ f) =A∼=C (h ◦ g) ◦ f

equivCompAssocA,B,C,D f g h ⇐ equivInduction f
equivCompAssocA,A,C,D 1A g h ⇐ equivInduction g
equivCompAssocB,B,B,D 1A 1A h ⇐ equivInduction h
equivCompAssocB,B,B,1A 1A 1A 1A

⇒ refl ■

36/51

equivCompAssocA,B,C,D (f : A ∼= B) (g : B ∼= C) (h : C ∼= D)
: h ◦ (g ◦ f) =A∼=C (h ◦ g) ◦ f

equivCompAssocA,B,C,D f g h ⇐ equivInduction f
equivCompAssocA,A,C,D 1A g h ⇐ equivInduction g
equivCompAssocB,B,B,D 1A 1A h ⇐ equivInduction h
equivCompAssocB,B,B,1A 1A 1A 1A ⇒ refl ■

37/51

What about “typal” computation rules?

We need a notation for the path constructor cases when matching on
HITs. You could something like

apd f loop ⇒ {. . .}

In Book HoTT, this “case” does not correspond to a definitional
equality. Important! Not just a defect of Book HoTT.

Epigram’s elimination of pattern matching works regardless of
whether there is any computational behaviour associated to the
eliminator whatsoever.

38/51

Promised remarks on accessibility predicates

Lean and Rocq/Equations elaborate structural recursion in terms of
accessibility predicates.

data Acc (R : A → A → Type) (x : A) : Type where

acc :
(∏

y:A Ryx → Acc y
)
→ Acc x

N.acc :
∏

x:N Acc (<) x

Then a function f :
∏

x:N B[x] is elaborated to like so:

f̂ :
∏

x:N Acc (<) x → B[x]
// implement by induction on Acc argument!

fx :≡ f̂ x (N.acc x)

38/51

Promised remarks on accessibility predicates

Lean and Rocq/Equations elaborate structural recursion in terms of
accessibility predicates.

data Acc (R : A → A → Type) (x : A) : Type where

acc :
(∏

y:A Ryx → Acc y
)
→ Acc x

N.acc :
∏

x:N Acc (<) x

Then a function f :
∏

x:N B[x] is elaborated to like so:

f̂ :
∏

x:N Acc (<) x → B[x]
// implement by induction on Acc argument!

fx :≡ f̂ x (N.acc x)

38/51

Promised remarks on accessibility predicates

Lean and Rocq/Equations elaborate structural recursion in terms of
accessibility predicates.

data Acc (R : A → A → Type) (x : A) : Type where

acc :
(∏

y:A Ryx → Acc y
)
→ Acc x

N.acc :
∏

x:N Acc (<) x

Then a function f :
∏

x:N B[x] is elaborated to like so:

f̂ :
∏

x:N Acc (<) x → B[x]
// implement by induction on Acc argument!

fx :≡ f̂ x (N.acc x)

39/51

This works fine. Recursive calls must pass a proof that their target is
strictly smaller than the current case.

Subtlety: Elaborated function calls Acc’s eliminator on its
accessibility argument. Computation is stuck unless the argument is
of the form “acc h” (important!).

Consequence: Making Acc proof-irrelevant immediately leads to
undecidability, because under proof irrelevance, if any such h exists,
then any proof ϕ : Acc (<) x is definitionally equal to acc h.

So much gnashing of teeth, but remember:

Doctor, it hurts when I [make Acc proof-irrelevant]. . .
Then stop [making Acc proof-irrelevant]!

…

39/51

This works fine. Recursive calls must pass a proof that their target is
strictly smaller than the current case.

Subtlety: Elaborated function calls Acc’s eliminator on its
accessibility argument. Computation is stuck unless the argument is
of the form “acc h” (important!).

Consequence: Making Acc proof-irrelevant immediately leads to
undecidability, because under proof irrelevance, if any such h exists,
then any proof ϕ : Acc (<) x is definitionally equal to acc h.

So much gnashing of teeth, but remember:

Doctor, it hurts when I [make Acc proof-irrelevant]. . .
Then stop [making Acc proof-irrelevant]!

…

39/51

This works fine. Recursive calls must pass a proof that their target is
strictly smaller than the current case.

Subtlety: Elaborated function calls Acc’s eliminator on its
accessibility argument. Computation is stuck unless the argument is
of the form “acc h” (important!).

Consequence: Making Acc proof-irrelevant immediately leads to
undecidability, because under proof irrelevance, if any such h exists,
then any proof ϕ : Acc (<) x is definitionally equal to acc h.

So much gnashing of teeth, but remember:

Doctor, it hurts when I [make Acc proof-irrelevant]. . .
Then stop [making Acc proof-irrelevant]!

…

39/51

This works fine. Recursive calls must pass a proof that their target is
strictly smaller than the current case.

Subtlety: Elaborated function calls Acc’s eliminator on its
accessibility argument. Computation is stuck unless the argument is
of the form “acc h” (important!).

Consequence: Making Acc proof-irrelevant immediately leads to
undecidability, because under proof irrelevance, if any such h exists,
then any proof ϕ : Acc (<) x is definitionally equal to acc h.

So much gnashing of teeth, but remember:

Doctor, it hurts when I [make Acc proof-irrelevant]. . .
Then stop [making Acc proof-irrelevant]!

…

40/51

Giménez’s memo structures as a “family transformer”

McBride proposed an alternative approach that avoids forcing
accessibility witnesses, inspired by Giménez.

Instead of pattern matching on the accessiblity proof, just take all
possible structural recursive calls as an argument (deep i.h.).

N.MemoP : N→Type : N → Type
N.MemoP 0 ≡ 1
N.MemoP (n+ 1) ≡ P[n]× N.MemoP n

Then functions f :
∏

x:N P[x] are elaborated to strengthen the i.h. via:

N.recP : (
∏

x:N N.MemoP x → P[x]) →
∏

x:N P[x]

40/51

Giménez’s memo structures as a “family transformer”

McBride proposed an alternative approach that avoids forcing
accessibility witnesses, inspired by Giménez.

Instead of pattern matching on the accessiblity proof, just take all
possible structural recursive calls as an argument (deep i.h.).

N.MemoP : N→Type : N → Type
N.MemoP 0 ≡ 1
N.MemoP (n+ 1) ≡ P[n]× N.MemoP n

Then functions f :
∏

x:N P[x] are elaborated to strengthen the i.h. via:

N.recP : (
∏

x:N N.MemoP x → P[x]) →
∏

x:N P[x]

40/51

Giménez’s memo structures as a “family transformer”

McBride proposed an alternative approach that avoids forcing
accessibility witnesses, inspired by Giménez.

Instead of pattern matching on the accessiblity proof, just take all
possible structural recursive calls as an argument (deep i.h.).

N.MemoP : N→Type : N → Type
N.MemoP 0 ≡ 1
N.MemoP (n+ 1) ≡ P[n]× N.MemoP n

Then functions f :
∏

x:N P[x] are elaborated to strengthen the i.h. via:

N.recP : (
∏

x:N N.MemoP x → P[x]) →
∏

x:N P[x]

41/51

Accessibility witnesses vs. memo structures

Mathematical insight: the two approaches are equivalent, basically
because the mapping-out space of a colimit is a limit.

But limits always work better than colimits in type theory!

Operational insight: The accessibility version must force its
auxiliary argument, whereas the memo structure version is lazy in its
auxiliary argument.

Memo structures = a more type-theoretically friendly interpretation
that entirely avoids the question of proof-irrelevance.

Combined with labelled types, readability of goals is assured.

41/51

Accessibility witnesses vs. memo structures

Mathematical insight: the two approaches are equivalent, basically
because the mapping-out space of a colimit is a limit.

But limits always work better than colimits in type theory!

Operational insight: The accessibility version must force its
auxiliary argument, whereas the memo structure version is lazy in its
auxiliary argument.

Memo structures = a more type-theoretically friendly interpretation
that entirely avoids the question of proof-irrelevance.

Combined with labelled types, readability of goals is assured.

41/51

Accessibility witnesses vs. memo structures

Mathematical insight: the two approaches are equivalent, basically
because the mapping-out space of a colimit is a limit.

But limits always work better than colimits in type theory!

Operational insight: The accessibility version must force its
auxiliary argument, whereas the memo structure version is lazy in its
auxiliary argument.

Memo structures = a more type-theoretically friendly interpretation
that entirely avoids the question of proof-irrelevance.

Combined with labelled types, readability of goals is assured.

41/51

Accessibility witnesses vs. memo structures

Mathematical insight: the two approaches are equivalent, basically
because the mapping-out space of a colimit is a limit.

But limits always work better than colimits in type theory!

Operational insight: The accessibility version must force its
auxiliary argument, whereas the memo structure version is lazy in its
auxiliary argument.

Memo structures = a more type-theoretically friendly interpretation
that entirely avoids the question of proof-irrelevance.

Combined with labelled types, readability of goals is assured.

41/51

Accessibility witnesses vs. memo structures

Mathematical insight: the two approaches are equivalent, basically
because the mapping-out space of a colimit is a limit.

But limits always work better than colimits in type theory!

Operational insight: The accessibility version must force its
auxiliary argument, whereas the memo structure version is lazy in its
auxiliary argument.

Memo structures = a more type-theoretically friendly interpretation
that entirely avoids the question of proof-irrelevance.

Combined with labelled types, readability of goals is assured.

42/51

Dealing with editors.

43/51

Moving on from batch mode

I have always built proof assistants in “batch mode”. (JonPRL,
RedPRL, redtt, cooltt.)

It is better to think about the proof assistant as an interactive server
rather than as a compiler.

1. Nuprl was literally a Smalltalk-style object database!

2. Rocq and Narya have an “interaction mode” that can be wired
up to Proof General.

3. Lean has a language server that provides advanced IDE-like
features to tons of editors that support Microsoft’s language
server protocol.

Lean’s approach seems to be similar to that of many modern
industrial programming languages, like Rust and Swift.

43/51

Moving on from batch mode

I have always built proof assistants in “batch mode”. (JonPRL,
RedPRL, redtt, cooltt.)

It is better to think about the proof assistant as an interactive server
rather than as a compiler.

1. Nuprl was literally a Smalltalk-style object database!

2. Rocq and Narya have an “interaction mode” that can be wired
up to Proof General.

3. Lean has a language server that provides advanced IDE-like
features to tons of editors that support Microsoft’s language
server protocol.

Lean’s approach seems to be similar to that of many modern
industrial programming languages, like Rust and Swift.

44/51

Designing a proof assistant around its language server seemed
backward to me at first. I was wrong.

+ It allows/forces us to design and orchestrate user interactions
from the start.

+ From Day One, we can have best-effort editor plugins,
semantic highlighting, etc.

+ A reasonable path toward incremental elaboration for
responsiveness.

+ Many aspects of the tool architecture have to be radically
inverted when moving from batch-mode to interaction-mode.
Surrender to the inevitable and take interactivity
seriously!

When I started, none of this was a user expectation. Times have
changed, we must adapt.

44/51

Designing a proof assistant around its language server seemed
backward to me at first. I was wrong.

+ It allows/forces us to design and orchestrate user interactions
from the start.

+ From Day One, we can have best-effort editor plugins,
semantic highlighting, etc.

+ A reasonable path toward incremental elaboration for
responsiveness.

+ Many aspects of the tool architecture have to be radically
inverted when moving from batch-mode to interaction-mode.
Surrender to the inevitable and take interactivity
seriously!

When I started, none of this was a user expectation. Times have
changed, we must adapt.

44/51

Designing a proof assistant around its language server seemed
backward to me at first. I was wrong.

+ It allows/forces us to design and orchestrate user interactions
from the start.

+ From Day One, we can have best-effort editor plugins,
semantic highlighting, etc.

+ A reasonable path toward incremental elaboration for
responsiveness.

+ Many aspects of the tool architecture have to be radically
inverted when moving from batch-mode to interaction-mode.
Surrender to the inevitable and take interactivity
seriously!

When I started, none of this was a user expectation. Times have
changed, we must adapt.

44/51

Designing a proof assistant around its language server seemed
backward to me at first. I was wrong.

+ It allows/forces us to design and orchestrate user interactions
from the start.

+ From Day One, we can have best-effort editor plugins,
semantic highlighting, etc.

+ A reasonable path toward incremental elaboration for
responsiveness.

+ Many aspects of the tool architecture have to be radically
inverted when moving from batch-mode to interaction-mode.
Surrender to the inevitable and take interactivity
seriously!

When I started, none of this was a user expectation. Times have
changed, we must adapt.

44/51

Designing a proof assistant around its language server seemed
backward to me at first. I was wrong.

+ It allows/forces us to design and orchestrate user interactions
from the start.

+ From Day One, we can have best-effort editor plugins,
semantic highlighting, etc.

+ A reasonable path toward incremental elaboration for
responsiveness.

+ Many aspects of the tool architecture have to be radically
inverted when moving from batch-mode to interaction-mode.
Surrender to the inevitable and take interactivity
seriously!

When I started, none of this was a user expectation. Times have
changed, we must adapt.

44/51

Designing a proof assistant around its language server seemed
backward to me at first. I was wrong.

+ It allows/forces us to design and orchestrate user interactions
from the start.

+ From Day One, we can have best-effort editor plugins,
semantic highlighting, etc.

+ A reasonable path toward incremental elaboration for
responsiveness.

+ Many aspects of the tool architecture have to be radically
inverted when moving from batch-mode to interaction-mode.
Surrender to the inevitable and take interactivity
seriously!

When I started, none of this was a user expectation. Times have
changed, we must adapt.

45/51

Thoughts on prevalent language servers

I love many aspects of Lean, but I don’t love how eager it is to display
error diagnostics whilst I’m in the middle of typing something, or
how the goals disappear whilst I am preparing a solution.

Using a language server architecture does not mean we are required
to copy every aspect of Lean, e.g. conflating holes with metavariables.

We should take the (many) good aspects that we can, and then
creatively consider the needs of proof engineers and students for
the rest.

45/51

Thoughts on prevalent language servers

I love many aspects of Lean, but I don’t love how eager it is to display
error diagnostics whilst I’m in the middle of typing something, or
how the goals disappear whilst I am preparing a solution.

Using a language server architecture does not mean we are required
to copy every aspect of Lean, e.g. conflating holes with metavariables.

We should take the (many) good aspects that we can, and then
creatively consider the needs of proof engineers and students for
the rest.

45/51

Thoughts on prevalent language servers

I love many aspects of Lean, but I don’t love how eager it is to display
error diagnostics whilst I’m in the middle of typing something, or
how the goals disappear whilst I am preparing a solution.

Using a language server architecture does not mean we are required
to copy every aspect of Lean, e.g. conflating holes with metavariables.

We should take the (many) good aspects that we can, and then
creatively consider the needs of proof engineers and students for
the rest.

46/51

In summary. . .

I am proposing to build a new proof assistant for HoTT/UF.

1. No experimental type theory! Orthodoxy is required to make
contact with mathematics, and to ensure viable implementation
strategies for reliable unification, automation, etc.

2. Simple, reliable, and flexible organisation of algebraic
hierarchies out of the box, combining ideas from Isabelle’s
locales and ML modules.

3. Usable programming with derived eliminators inspired by
Epigram, adapted for HoTT/UF.

4. Fine-grained control over unfolding both for display and
abstraction.

5. Rich editor experience from the start.

This is admittedly a huge project.

46/51

In summary. . .

I am proposing to build a new proof assistant for HoTT/UF.

1. No experimental type theory! Orthodoxy is required to make
contact with mathematics, and to ensure viable implementation
strategies for reliable unification, automation, etc.

2. Simple, reliable, and flexible organisation of algebraic
hierarchies out of the box, combining ideas from Isabelle’s
locales and ML modules.

3. Usable programming with derived eliminators inspired by
Epigram, adapted for HoTT/UF.

4. Fine-grained control over unfolding both for display and
abstraction.

5. Rich editor experience from the start.

This is admittedly a huge project.

46/51

In summary. . .

I am proposing to build a new proof assistant for HoTT/UF.

1. No experimental type theory! Orthodoxy is required to make
contact with mathematics, and to ensure viable implementation
strategies for reliable unification, automation, etc.

2. Simple, reliable, and flexible organisation of algebraic
hierarchies out of the box, combining ideas from Isabelle’s
locales and ML modules.

3. Usable programming with derived eliminators inspired by
Epigram, adapted for HoTT/UF.

4. Fine-grained control over unfolding both for display and
abstraction.

5. Rich editor experience from the start.

This is admittedly a huge project.

46/51

In summary. . .

I am proposing to build a new proof assistant for HoTT/UF.

1. No experimental type theory! Orthodoxy is required to make
contact with mathematics, and to ensure viable implementation
strategies for reliable unification, automation, etc.

2. Simple, reliable, and flexible organisation of algebraic
hierarchies out of the box, combining ideas from Isabelle’s
locales and ML modules.

3. Usable programming with derived eliminators inspired by
Epigram, adapted for HoTT/UF.

4. Fine-grained control over unfolding both for display and
abstraction.

5. Rich editor experience from the start.

This is admittedly a huge project.

46/51

In summary. . .

I am proposing to build a new proof assistant for HoTT/UF.

1. No experimental type theory! Orthodoxy is required to make
contact with mathematics, and to ensure viable implementation
strategies for reliable unification, automation, etc.

2. Simple, reliable, and flexible organisation of algebraic
hierarchies out of the box, combining ideas from Isabelle’s
locales and ML modules.

3. Usable programming with derived eliminators inspired by
Epigram, adapted for HoTT/UF.

4. Fine-grained control over unfolding both for display and
abstraction.

5. Rich editor experience from the start.

This is admittedly a huge project.

46/51

In summary. . .

I am proposing to build a new proof assistant for HoTT/UF.

1. No experimental type theory! Orthodoxy is required to make
contact with mathematics, and to ensure viable implementation
strategies for reliable unification, automation, etc.

2. Simple, reliable, and flexible organisation of algebraic
hierarchies out of the box, combining ideas from Isabelle’s
locales and ML modules.

3. Usable programming with derived eliminators inspired by
Epigram, adapted for HoTT/UF.

4. Fine-grained control over unfolding both for display and
abstraction.

5. Rich editor experience from the start.

This is admittedly a huge project.

46/51

In summary. . .

I am proposing to build a new proof assistant for HoTT/UF.

1. No experimental type theory! Orthodoxy is required to make
contact with mathematics, and to ensure viable implementation
strategies for reliable unification, automation, etc.

2. Simple, reliable, and flexible organisation of algebraic
hierarchies out of the box, combining ideas from Isabelle’s
locales and ML modules.

3. Usable programming with derived eliminators inspired by
Epigram, adapted for HoTT/UF.

4. Fine-grained control over unfolding both for display and
abstraction.

5. Rich editor experience from the start.

This is admittedly a huge project.

1

One more thing…

I have a prototype (of some of this)…

